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0 Introduction

There are essentially two components to doing calculus. The first component is computational -
learning all of the tricks and formulas that make up the bulk of the “work” for any given problem.
The second component is intuition and visualization - a feeling for the infinitesimal, of what it
means to be “approaching” a limit or adding up infinitely many pieces of infinitely small area
to obtain something meaningful. Both aspects of the subject are crucial. Intuition without the
computational firepower to back it up won’t get very far. For example the “intuitive” statement:

Theorem 0.1. A continuously differentiable function’s minimum occurs either at its endpoints or where its
derivative is zero.

is very nice in that it doesn’t appear to involve any formulas, but it doesn’t help too much if one
can’t then compute the function’s derivative and solve the resulting algebraic equation to obtain its
roots.

On the flip side, it is entirely possible to get lost in computation when an intuitive approach
would save you a lot of trouble. For example consider the following improper integral, that asks
you to find the (signed) area underneath the curve f (x) = e−x2

x3 between −∞ and ∞:∫ ∞

−∞
e−x2

x3dx (0.1)

This is a Hard Integral™if one immediately attacks it computationally, but if one thinks about the
geometry of the curve and what doing an integral actually means the answer just falls out. The
function f (x) = e−x2

x3 is what’s called an “odd function,” meaning simply that its values to the
left of zero are the negative versions of its values to the right of zero:

Figure 1: Another way to the think about the fact that f (x) = e−x2
x3 is an odd function is that it

stays the same if you rotate it by 180 degrees.

Doing an integral in this case means computing the signed area between the curve and the x
axis (positive if the area is above the x axis, negative if the area is below the x axis). But since we
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are integrating from −∞ to ∞ and the function is odd, the area to the right of the origin (positive)
and the area to the left of the origin (negative) are equal in magnitude but opposite in sign, and
hence cancel out. Thus intuition gets us to∫ ∞

−∞
e−x2

x3dx = 0 (0.2)

This is an important truth about doing calculus - doing calculus is not the same as doing calculations,
and while sometimes calculation is unavoidable, other times it is best avoided!

0.1 Course Schedule

This is a five week whirlwind tour of calculus. The rough outline for the course will be as follows:

• June 27 - July 1

June 27 Tuesday Review: Domain and Range, Linear Functions, Exponential Functions
June 28 Wednesday Review: Transformations of Functions, Inverse Functions, Logarithmic Functions
June 30 Thursday Review: Rational Functions, Trig Functions
July 1 Friday Limits, Continuity, ϵ − δ Calculus

• July 4 - July 8

July 4 Monday Holiday
July 5 Tuesday Tangent Lines, Velocities, and the Derivative
July 6 Wednesday Derivatives of polynomials, exponentials, products, and quotients
July 7 Thursday Derivatives of composite functions, inverse functions, and Implicit Differentiation
July 8 Friday Applications of Differentiation: Approximating Functions, L’Hopital’s Rule

• July 11 - July 15

July 11 Monday Applications of Differentiation: Optimization
July 12 Tuesday Applications of Differentiation: Exponential growth, Related Rates
July 13 Wednesday Integration: Definite Integrals, The Riemann Integral
July 14 Thursday Integration: Indefinite Integrals, The FTCs, Some Anti-Derivatives
July 15 Friday Integration Techniques: Integration by substitution

• July 18 - July 22

July 18 Monday Integration Techniques: Integration by parts
July 19 Tuesday Trigonometric Integrals
July 20 Wednesday Partial Fractions Integration
July 21 Thursday Applications of Integration: Volumes, Center of Mass, Differential Equations
July 22 Friday Sequences, Convergence/Divergence, Geometric Series, Absolute Convergence

• July 25 - July 29
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July 25 Monday Series Convergence Tests: The Comparison Test, The Limit Comparison Test
July 26 Tuesday Series Convergence Tests: The Ratio Test, The Root Test, The Integral Test
July 27 Wednesday Power Series and the Interval of Convergence
July 28 Thursday Taylor Series, Applications and Examples.
July 29 Friday A beautiful result: DeMoivre’s Formula and Euler’s Identity

0.2 Course Format and Materials

This course relies heavily on two textbooks:

• Calculus With Concepts by Denny Gulick and Robert Ellis.

• Calculus Single and Multi Variable by Deborah Hughes-Hallet et al.

You don’t need to buy either of these books. The first book, Calculus With Concepts, is available
via the course Web Assign page (add link once webassign is setup). I will always post course
notes to this document in advance of class and I will provide problems separately (some from the
books, some not). However, if you want even more practice material and background these are
both terrific books.
The breakdown of in class time will be as follows:

• 25 minutes: Lecture / exposition by me.

• 65 minutes Problem solving in groups.

• 30 minutes Problem solving presentations / exposition by you.

There is a course discord https://discord.gg/k4s3FD6b8j where you can and should ask each
other and me questions. I am also always reachable at cbartondock@gmail.com or cdock@umd.edu

The undergraduate mentor for the course is Kenan Asmerom Atlaw, who can be reached at
katlaw@umd.edu.

https://discord.gg/k4s3FD6b8j
cbartondock@gmail.com
cdock@umd.edu
katlaw@umd.edu
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1 Functions and a review of some precalculus topics

1.1 Domain and range

Resources

• Khan Academy on Functions

• Calculus with Concepts 1.3

• Single and Multi-Variable Calculus 1.1

A function f is a rule that assigns each element of of one set (collection of objects) X to a single
element of a second set Y. We write f : X → Y.

Example 1.1. The following is a function from the set X = {Red, Green, Blue} to the set Y =
{Purple, Yellow, Orange}:

Figure 2: A function doesn’t have to act on numbers. It is just a machine that takes inputs and spits
out outputs. It can act on integers, real numbers, colors, whatever!

The set X is called the domain of the function f (where its inputs live) and the set Y is usually
called its co-domain (where its outputs live). Meanwhile, the actual values that the function
outputs are called the range of the function (usually written f (X)). In this case the range is
f (X) = {Yellow, Orange} (purple isn’t “hit” by the function f ).

Note that a function is not guaranteed to hit every element of the co-domain, and must assign
each element of the domain to only one element of the co-domain.

Non-Example 1.1. The following association is not a function:

https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:functions
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Figure 3: A function must assign each input only to a single output, this is not a function!

Usually (and from now on in this course) the inputs and outputs of functions will be real
numbers, elements of the set R (the real number line):

Figure 4: The real number line R

Example 1.2. Consider the function f : R → R with f (x) = x2, the humble parabola. Unlike the
color function above (which had three inputs), this function has too many inputs to list. We can list
a few:

x -2 -1 0 0.5 π = 3.14 . . . · · ·
f(x) 4 1 0 0.25 π2 = 9.86 . . . · · ·

Instead of listing all the inputs and outputs of a function of a real variable, what we usually do is
graph the collection of points (x, f (x)) such that x is a real number (the input of the function is the
x coordinate and the output of the function is the y coordinate). In this case we get the graph:
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Figure 5: The graph of f (x) = x2, a parabola.

The domain of this function x 7→ x2 is all real numbers, whereas its range is only the non-
negative real numbers [0, ∞).

Given two functions f , g : R → R we can form new functions in several ways:

• Functions can be added and subtracted: ( f + g)(x) = f (x) + g(x) and ( f − g)(x) = f (x)−
g(x).

• Functions can be multiplied: ( f · g)(x) = f (x)g(x).

• Functions can be divided: ( f /g)(x) = f (x)/g(x). The new functions f /g must exclude from
its domain all points where g(x) = 0.

• Functions can be composed, ( f ◦ g)(x) = f (g(x)) and (g ◦ f )(x) = g( f (x)). Note that
composition is not commutative, for example if f (x) = x2 and g(x) = x + 1 then g( f (x)) =
x2 + 1 and f (g(x)) = (x + 1)2 = x2 + 2x + 1.

What about functions that don’t make sense for arbitrary real numbers, like f (x) = 1
x or

f (x) =
√

x?

Example 1.3. Consider f (x) = 1
x . Clearly this function is fine and has meaningful outputs for all

inputs except x = 0, but it has a serious problem at x = 0: division by zero is Not Allowed™. The
way we deal with this is to restrict the domain of the function to be (−∞, 0) ∪ (0, ∞). The symbol ∪
here means the union of the two intervals, that is to say the domain of the function is all numbers
that are either less than zero or bigger than zero). Incidentally, the range of this function is also
(−∞, 0) ∪ (0, ∞). Its graph is:
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Figure 6: The graph of f (x) = 1/x, a hyperbola.

Example 1.4. The function f (x) =
√

x (when considered to have real inputs and outputs) only
makes sense for non-negative inputs, thus it has domain [0, ∞).

It is of course possible to find the domain of more complicated functions by systematically
removing all of the points and intervals for which they are not defined, for example:

Example 1.5. Find the domain of the function

g(x) =
√

100 − x
(x − 2)(

√
x − 5)

(1.1)

The numerator is well defined so long as x ≤ 100 (because of the square root), and the denominator
is well defined so long as x ≥ 0 (because of the square root), x ̸= 2 (because of the factor
(x − 2)), and x ̸= 25 (because of the factor (

√
x − 5)). Thus the domain of g is [0, 100] \ {2, 25} =

[0, 2) ∪ (2, 25) ∪ (25, 100]. The symbol \ here is the “set minus”, thus in English the domain of g is
the closed interval from 0 to 100 excluding the numbers 2 and 25.

In general if f and g are functions then:

• The domain of the sum f + g and of the product f · g is:

Domain[ f + g] = Domain[ f · g] = Domain[ f ] ∩ Domain[g] (1.2)

• The domain of the quotient f /g is:

Domain[ f /g] = Domain[ f · g] = Domain[ f ] ∩ Domain[g] \ {x|g(x) = 0} (1.3)

• The domain of the composition f ◦ g is:

Domain[ f ◦ g] = Domain[g] ∩ g−1(Domain[ f ]) (1.4)
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Where if A is a set then g−1(A) = {x|g(x) is in A}. Intuitively, we exclude all of the “problem
points” for g plus all of the points that get sent to problem points for f by g.

It is possible to test whether a given graph comes from a function using the “vertical line test,”
which asks whether it is possible to pass a vertical line through the curve at more than one point. If
so, then the curve is not a function:

Figure 7: The curve shown here is not a function of x, because it would purport to assign (for
example) x = 0.5 to two values.

1.2 Linear functions

Resources

• Khan Academy on Linear Equations

• Calculus with Concepts 1.2

• Single and Multi-Variable Calculus 1.1

Definition. A function f : R → R is called linear if there exists a constant m so that

f (x2)− f (x1)

x2 − x1
= m (1.5)

for all inputs x1 and x2. This constant m is known as the slope of the linear function, because it
encodes how much the function changes in proportion to its inputs.

https://www.khanacademy.org/math/algebra-home/alg-linear-eq-func
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Figure 8: The geometric meaning of (1.5) and (1.6)

The equation (1.5) is also often written as

∆ f
∆x

=
f (x + h)− f (x)

h
= m (1.6)

The “rise” ∆ f = f (x + h)− f (x) is the amount of change in f when the input changes by the “run”
∆x = (x + h)− h = h. Note that if f (0) = b, that is to say the y intercept of f is b, then (setting
x2 = x and x1 = 0 and solving (1.5) for f (x)) we find

f (x) = mx + b (1.7)

The standard form for linear equations with finite slope.

Linear trends are ubiquitous in data, when a given quantity increases or decreases by (roughly)
the same amount in every fixed period of time. In [HH+02] they give the example of the pole
vaulting world record height between 1900 and 1912:

Year 1900 1904 1908 1912
Height (in) 130 138 146 154

The trend is clear – the winning height increases by about 8 inches every 4 years (obviously it was
not possible for this trend to continue indefinitely!). This means that the approximating linear
function should have a slope of 2 (rise is 8 and run is 4) and be equal to 130 when t = 1900, thus if
we plot the data on top of h(t) = 2(t − 1900) + 130 we get:
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Figure 9: The graph of the linear function h(t) = 2(t − 1900) + 130, overlaid with the data from the
pole vaulters.

Intuitively, a function is non-linear if its graph is not a straight-line. None of the previously
mentioned functions f (x) = x2, f (x) =

√
x, or f (x) = 1/x are linear. This can be confirmed by

computing a few values of the rise over run ratio (1.5) at different points and observing that the
rise over run ratio changes as x1 and x2 vary.

Linear functions may be simple, but they form the bedrock of differential calculus. In particular,
we will be quite interested in secant lines :

Definition. Given a function f : R → R and two numbers a and b, the secant line of f from a to b
is the line through the point A = (a, f (a)) and the point B = (b, f (b)). That is, the line

f (x)− f (a)
x − a

=
f (b)− f (a)

b − a
⇐⇒ f (x) =

f (b)− f (a)
b − a

(x − a) + f (a) (1.8)

Example 1.6. We obtain the secant line of sin(x) between 0 and π
4 . Firstly the slope of the secant

line is

sin(π/4)− sin(0)
π/4 − 0

=
1/

√
2

π/4
=

2
√

2
π

≈ .9 (1.9)

Secondly we know that sin(0) = 0, thus from (1.8) we get that the secant line is f (x) = (2
√

2/π)x.
Plotting both sin(x) and f (x) = (2

√
2/π)x yields:
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Figure 10: The secant line of sin(x) from x = 0 to x = π
4 . Notice that the secant line appears to

approximate the tangent line of sin(x) at zero, and that this approximation should get better as the
second secant point gets closer to zero.

1.3 Exponential functions

Resources

• Khan Academy on Exponential Growth and Decay

• 3Blue1Brown Exponential Growth and Pandemics

• Calculus with Concepts 1.2

• Single and Multi-Variable Calculus 1.8

Exponential functions are somewhat similar in character to linear functions, except that instead
of having a constant difference for a given difference in inputs, they have a constant ratio for a
given difference in inputs:

Definition. A function f is exponential if there exists a constant r such that

( f (x + h)/ f (x))1/h = r (1.10)

for all x and h.

Note the similarity of (1.10) to (1.6) – replace subtraction by division and division by root taking.
The constant r is known as the exponential growth rate of the function if r > 1 and the exponential
decay rate if r < 1 (if r = 1 the function f is constant).

Consider the following data on bacteria populations in a petri-dish (populations without natural
predators exhibit exponential growth until they run into resource constraints):

Time (in days) 0 1 2 3 4
Population (in thousands) 5 10 20 40 80

https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:exponential-growth-decay
https://www.3blue1brown.com/lessons/exponential-and-epidemics
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The population is doubling every day, with an initial population of 5000 individuals. Thus the
exponential curve that models the population growth is

p(t) = 5000 · 2t (1.11)

Note that p(t + h)/p(t) = 2h, indicating an exponential growth rate of 2. We can plot both p(t)
and the data to obtain

Figure 11: A plot of the curve p(t) alongside the data above.

Similarly to linear functions, exponential functions are determined once the exponential rate
parameter r is known and the value of the function is known at any particular point. Indeed,
suppose f (0) = A. Then (1.10) gives

f (0 + h)/ f (0) = rh ⇐⇒ f (h) = A · rh (1.12)

Thus the general form for an exponential function is f (x) = A · rx. The number r is also known
as the base of the exponential. The most common and useful base for the exponential is actually
the famous irrational number e = 2.718281828459 . . ., but unfortunately the reason this base is so
useful will have to wait until we have a little bit more of the machinery of calculus available to us.

Note that we can change base using logarithms. Indeed if f (x) = Arx and we want to know
the form for f with exponential base 2 then we note that r = 2log2(r) = 2ln(r)/ ln(2). Thus f (x) =
A · 2(ln(r)/ ln(2))x. This is useful for obtaining doubling times or half-lives. If an exponential function
is in the form

f (t) = A · 2t/T (1.13)

then it doubles every T units of time (every time t increases by T it picks up an extra factor of 2).
Thus T is called the doubling time of the exponential function. If the exponential function is given
instead via f (t) = Art with some rate r then we can still obtain the doubling time since

Art = A · 2(ln(r)/ ln(2))t = A · 2t/(ln(2)/ ln(r)) (1.14)
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Thus the doubling time is T = ln(2)/ ln(r).
Similarly, if an exponential function is in the form

f (t) = A · 2−t/τ = A(1/2)t/τ (1.15)

then it decays by a factor of 1/2 every τ units of time (every time t increases by τ it picks up an
extra factor of 1

2 ), thus τ is referred to as the half-life. This type of equation is often used to model
the decay of radio-active isotopes. For example, one of the more dangerous isotopes released into
the environment by the Chernobyl nuclear disaster in 1986 was Cs-137 or Caesium 137, which has
a half life of τ ≈ 30 years. About 25 kilograms was released into the environment, so if we want to
figure out how much is still there we can compute it via f (2022) where f (t) is

f (t) = 25 · 2−(t−1986)/30 (1.16)
f (2022) ≈ 10.9 (1.17)

Thus there are still approximately 11 kilograms of Cs-137 remaining from the Chernobyl disaster
(this might not seem like much, but it and Strontium 90 are the main reasons that the area will not
be safe for human habitation for at least another 300 years or so).

One particularly useful financial application of exponential functions is interest, and specifically
compounding interest. If an investment initial investment I0 grows with a rate r per year (a typical
r might be .02 or 2%) then after the first year one has

I1 = I0 · 1.02 = I0(1 + r) (1.18)

If one then re-invests, the interest rate applies to all of I1 not just I0, so that after the second year
one has

I2 = I1 · 1.02 = I0(1.02)2 = I0(1 + r)2 (1.19)

This process continues, and so after t years one has

I(t) = I0(1 + r)t (1.20)

So far so good, but then you realize you could actually make more on your investment by re-
investing earlier. Why wait until the end of the year to put the profit back into the investment and
start receiving interest on it? So you decide to re-invest k times per year (for example k = 12 would
be monthly compounding). In this case the return for each “compounding period” is r/k, but there
are k such periods, so after one year you would have

I1 = I0 (1 +
r
k
) · · · (1 + r

k
)︸ ︷︷ ︸

k factors

= (1 +
r
k
)k (1.21)

And as before after two years

I2 = I1(1 +
r
k
)k = I0(1 +

r
k
)2k (1.22)

So that finally after t years one has

I(t) = I0(1 +
r
k
)kt (1.23)

This is the formula for the return on an investment I0 with rate r and compounding k times per
unit of time (typically years). One might well ask what happens as we compound more and more
frequently. Obviously profit increases, but does it do so indefinitely? Unfortunately not, but we
will have to wait until we have learned about limits to answer this question in full.

Working with exponential functions requires one to have a full mastery of the properties of
exponentiation. For reference, recall that for any a > 0 and x, y real numbers:
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• Exponential of a sum is the product of exponentials:

ax+y = axay = ayax (1.24)

• Exponential of a product is the composition of exponentials (in any order):

axy = (ax)y = (ay)x (1.25)

Note that this is not the same thing as a(xy) or a(y
x). Exponentiation is not associative!

• The exponential of a negation is the reciprocal of the exponential:

a−x =
1
ax (1.26)

1.4 Transformations and Symmetries of Functions

Resources

• Khan Academy on Transformations and Symmetries of Functions

• Calculus with Concepts 1.5

• Single and Multi-Variable Calculus 1.3

Given a function f : R → R we can obtain several families of functions by shifting and scaling
f . For the following examples let f : R → R be given by f (x) = 1 − x2. The graph of f is an upside
down parabola with its highest point at (0, 1) and with x-intercepts ±1. Let a > 0

Example 1.7 (Vertical Shift). We can shift a function f up by a units by letting f (x) → f (x) + a, or
down by a units by letting f (x) → f (x)− a:

Figure 12: Shifting f up and down by 2 units.

https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:transformations#x2ec2f6f830c9fb89:log-graphs
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Example 1.8 (Horizontal Shift). We can shift a function f to the right by a units by letting f (x) →
f (x − a), or to the left by a units by letting f (x) → f (x + a):

Figure 13: Shifting f to the left and right by 2 units.

The fact that f (x) → f (x − 2) shifts the function f to the right rather than the left is sometimes
counter-intuitive to students. It can help to think of f (x) → f (x − 2) pulling the function values
from the left to the right, e.g. the value at 3 gets replaced by the value at 1 and the value at 1 gets
replaced by the value at -1, etc.

Example 1.9 (Vertical Scale). We can stretch a function f in the vertical direction by letting f (x) →
a f (x):

Figure 14: Stretching and squishing f vertically by a factor of 2. If a > 1 the function is stretched, if
a < 1 the function is squished.
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Figure 15: Stretching and squishing f horizontally by a factor of 2. If a > 1 the function is stretched,
if a < 1 the function is squished.

Example 1.10 (Horizontal Scale). We can stretch a function in the horizontal direction by letting
f (x) → f (x/a). As in the case of horizontal translation, it can help to think of the horizontal stretch
f (x) → f (x/a) as pulling values from close to the origin to replace values further from the origin.
For example if f (x) → f (x/2) then f (2) is replaced by f (1), f (−2) is replaced by f (−1), etc.

Example 1.11 (Reflection over the y axis). The operation f (x) → f (−x) reflects the function f over
the y-axis:

Figure 16: The function f (x) =
√

x − 1 reflected over the y axis

We call a function even if it is unchanged by reflecting it over the y-axis, that is if f (x) = f (−x).
The reason for this terminology is that a polynomial function is even if and only if it contains only
even powers, e.g. x2, 1 − x2, x4 − x2, etc.
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Example 1.12 (Reflection over the origin / Rotation by π). The operation f (x) → − f (−x) reflects
the function f over the origin, or equivalently it rotates the function by π radians:

Figure 17: The function f (x) =
√

x − 1 reflected over the origin

We call a function odd if it is unchanged by reflecting it over the origin, that is if f (x) = − f (−x)
or f (−x) = − f (x). The reason for this terminology is that a polynomial function is odd if and only
if it contains only odd powers, e.g. x, x3, x5 − x, etc.

Example 1.13 (Reflection over the x axis). The operation f (x) → − f (x) reflects f over the x axis:

Figure 18: The function f (x) =
√

x − 1 reflected over the x axis

Note that the only function that is symmetric over the x axis, i.e. that satisfies f (x) = − f (x), is
f (x) = 0 (other curves may satisfy this symmetry, like the circle, but they are not functions).
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1.5 Inverse functions

Resources

• Khan Academy on Inverse Functions and Compositions

• Calculus with Concepts 7.1

• Single and Mult-Variable Calculus 1.3

The inverse (sometimes called the left inverse) of a function f : X → Y is a second function
f−1 : f (X) → X such that f−1( f (x)) = x. For example if the function g : {Red, Green, Blue} →
{Purple, Yellow, Orange} is given as on the left then its inverse is given as on the right:

Figure 19: An invertible function g : X → Y and its inverse g−1 : Y → X. Notice that if you follow
any one of the arrows you end up back where you start, e.g. Red goes to Yellow via g and then
Yellow goes to Red via g−1.

Not all functions have inverses, for example, suppose g were instead given as:

https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:composite
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Figure 20: A non invertible function.

In this case there is no inverse function g−1 because “information is lost” when both Red and
Green are sent to Yellow. Any inverse function would have to assign Yellow to both Red and Green,
but functions can only take a single value for a given input. We call such a function non-invertible.
In general a function g : X → Y is invertible (also known as injective) if no two elements of X get
sent to the same element of Y. Rephrasing that slightly, a function g : X → Y is non-invertible if we
can find x1 and x2 that are different from each-other and such that g(x1) = g(x2).

For a function f : R → R, we can check invertibility by seeing if the function passes the
“horizontal line test”:

Figure 21: The function g(x) = 4 − x2 fails the horizontal line test, since you can find a horizontal
line that passes through it at more than one point. As shown here, this is the graphical equivalent
of finding x1 and x2 such that g(x1) = g(x2).

If y = f−1(x) then x = f (y), which is just the usual equation describing the graph of the
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function f , y = f (x), but with x and y interchanged. Thus the graph of an inverse function is
obtained by switching the role of x and y, or equivalently reflecting the graph of the original
function over the line y = x (note that in this case the horizontal line test for the original line test
corresponds to the vertical line test for the inverse function).

Whether or not a given function is invertible depends strongly on the choice of domain. For
example the function sin : R → [−1, 1] is not invertible, since for example the horizontal line
y = 0.5 passes through it infinitely many times. The function sin : [−π

2 , π
2 ] → [−1, 1], however, is

invertible:

Figure 22: The function sin : R → [−1, 1] is not invertible because it fails the horizontal line
test, but if we restrict to sin : [−π

2 , π
2 ] → [−1, 1] (shown in orange) we can obtain an inverse

sin−1 : [−1, 1] → [−π
2 , π

2 ] (shown in green) by reflecting over y = x (shown in blue).
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1.6 Logarithmic functions

Resources

• Khan Academy on Properties of Logarithms

• Khan Academy on Graphs of Logarithmic Functions

• Calculus with Concepts 1.8

• Single and Multi-Variable Calculus 1.4

Logarithms are the functional inverses of exponential functions. Specifically, the function
x 7→ loga(x) is the inverse of the function x 7→ ax – each undoes the other:

aloga(x) = x and loga(ax) = x (1.27)

Another way of saying this is that loga(x) is defined to be the unique real number y such that
ay = x. For example, 42 is 16, therefore log4(16) = 2. As noted in Section 1.5, this means that the
graph of the function x 7→ loga(x) is the reflection of the graph of x 7→ ax over the line y = x:

Figure 23: The graph of log1.3(x) is the reflection of 1.3x over the line y = x. Note that for any a the
function loga(x) “blows up” to −∞ as x approaches zero from above.

The properties of logarithms can all be derived from those of the exponential, for example for

https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:logs
https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:transformations/x2ec2f6f830c9fb89:log-graphs/e/graphs-of-exponentials-and-logarithms
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a > 0 and x, y real:

loga(xy) = z ⇐⇒ az = xy (1.28)

Meanwhile loga(x) = p if and only if ap = x and loga(y) = q if and only if aq = y. Thus

loga(xy) = z ⇐⇒ az = xy = apaq = ap+q (1.29)

But if az = ap+q then we must have z = p + q, that is (substituting in for z, p, and q):

loga(xy) = loga(x) + loga(y) (1.30)

That is to say the logarithm of a product is the sum of the logarithms (compare this to (1.24)).
Similarly, for a, b > 0 and x real we can compute loga(b

x) via:

loga(b
x) = z ⇐⇒ az = bx ⇐⇒ (az)1/x = b ⇐⇒ az/x = b (1.31)

Thus loga(b) = z/x and hence z = x loga(b). Substituting in the value of z we conclude:

loga(b
x) = x loga(b) (1.32)

Repeatedly applying this identity implies that a “stack” of exponents gets pulled out as a product:

loga((b
x)y) = xy logb(a) (1.33)

This should be compared with (1.25).
Finally supposing we know logb(x) and would like to know loga(x), how should we proceed?

Well as before
loga(x) = z ⇐⇒ az = x (1.34)

And moreover, by the fact that the logarithm is the inverse of the exponential, a = blogb(a). Thus

x = az = (blogb(a))z = bz logb(a) (1.35)

From which (by the definition of the logarithm) we conclude logb(x) = z logb(a) = loga(x) logb(a).
Dividing both sides by logb(a) we find the highly useful identity

loga(x) =
logb(x)
logb(a)

(1.36)

This identity allows one to convert between logarithm bases at will, going from base b to base a
one simply divides by logb(a). A particular case of this identity to keep in the back of your head is
when x = b:

loga(b) =
1

logb(a)
(1.37)

In summary, the logarithm identities one uses most often are:

• The log of a product is the sum of logs:

loga(xy) = loga(x) + loga(y) (1.38)

• The log of an exponential pulls out the exponent as a factor, leaving the base behind:

loga(b
x) = x loga(b) (1.39)
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• One can change the base of a log from b to a by dividing by logb(a) (or multiplying by
loga(b)!):

loga(x) =
logb(x)
logb(a)

(1.40)

In this course the natural logarithm loge(x) (where e = 2.718 . . . is Euler’s constant) will always
be written as ln(x). The reason it is “ln” and not “nl” is that ln is actually short for the Latin
“logarithmus naturalis.” One also sometimes sees the base 10 logarithm log10(x) written without its
base as log(x), however this is more for historical reasons than mathematical reasons – it is unlikely
that the base 10 logarithm will show up in this course.

1.7 Trigonometric functions

Resources

• Khan Academy on Trig Functions

• Calculus with Concepts 1.7

• Single and Multi-Variable Calculus 1.5

Trigonometric functions differ from linear, polynomial, exponential, and logarithmic functions
in that they are difficult to motivate algebraically (at least whilst remaining among the real numbers).
Instead, it is best to view them geometrically as the functions that relate angular quantities (e.g. arc
length along a circle) to rectilinear quantities (coordinates in the xy-plane).

Figure 24: The standard graphical definition of cos(x) and sin(x) as the horizontal and and vertical
components of a point on the circle of radius one 1 at x radians.

Note that right away this gives us our first trig identity, by the Pythagorean Theorem:

cos2(x) + sin2(x) = 1 (1.41)

https://www.khanacademy.org/math/algebra-home/alg-trig-functions
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You should know the following identities for sin and cos:

• The sum of angles formula:

sin(x + y) = sin(x) cos(y) + cos(x) sin(y) (1.42)
cos(x + y) = cos(x) cos(y)− sin(x) sin(y) (1.43)

• The double angle formula follows from setting x = y above:

sin(2x) = 2 sin(x) cos(x) (1.44)

cos(2x) = cos2(x)− sin2(x) (1.45)

• Adding together (1.45) with (1.41) we find 2 cos2(x) = 1 + cos(2x). Taking the difference
instead we find 2 sin2(x) = 1 − cos(2x). Rearranging things a bit and replacing x by x/2 we
arrive at the half angle formulas:

sin(x/2) = ±
√

1 − cos(x)
2

(1.46)

cos(x/2) = ±
√

1 + cos(x)
2

(1.47)

The sign ± depends on where on the unit circle x/2 is, for example if x/2 ∈ [0, π
2 ) then both

are positive.

• Plugging in y = π
2 into the sum formulas yields the fact that cos(x) and sin(x) are horizontal

translates of each other by π
2 :

cos(x) = sin(x +
π

2
) (1.48)

sin(x) = cos(x − π

2
) (1.49)

The sum of angles formula is easiest to derive with a little bit of math in the complex plane, so we’ll
skip the derivation for now (it is possible but tedious to derive it with plain old plane geometry).

We will also regularly use the following three trig functions:

tan(x) :=
sin(x)
cos(x)

(1.50)

cot(x) :=
1

tan(x)
=

cos(x)
sin(x)

(1.51)

sec(x) :=
1

cos(x)
(1.52)

csc(x) :=
1

sin(x)
(1.53)

Note that unlike sin(x) and cos(x), these trig functions are not defined everywhere. For example
tan(x) is undefined whenever cos(x) = 0, that is whenever x = π

2 + πk for any k in Z.
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Figure 25: Graph of tan(x) and cot(x).

Figure 26: Graph of cos(x) and sec(x).
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Figure 27: Graph of sin(x) and csc(x).

Some other useful trig identities that essentially follow from the definitions above are:

sec2(x)− tan2(x) = 1 (1.54)

csc2(x)− cot2(x) = 1 (1.55)
sin(x) tan(x) = sec(x)− cos(x) (1.56)

In addition to these six trig functions, one also often has use for the inverse trig functions. Now,
none of the trig functions mentioned above is invertible on all of R, so that means one has to restrict
the domain of the trig function to a region in which they pass the horizontal line test before taking
the inverse. Or equivalently, to restrict the range of the inverse so that it passes the vertical line test:
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Figure 28: Graph of sin−1(x).

This amounts to choosing between equivalent angles on the unit circle, for example since
sin(π/2) = sin(5π/2) = 1 we could just as easily set sin−1(1) = π/2 or sin−1(1) = 5π/2. One
typically makes the following choices for the ranges of the inverse functions

• sin−1 : [−1, 1] → [−π/2, π/2]

• cos−1 : [−1, 1] → [0, π]

• tan−1 : (−∞, ∞) → (−π/2.π/2)

• sec−1 : (−∞,−1) ∪ (1, ∞) → (0, π)

• csc−1 : (−∞,−1) ∪ (1, ∞) → (−π/2, π/2)

Note that in each case the domain of the inverse is the range of the original function. The graphs of
the rest of the inverse trig functions are below.
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Figure 29: Graph of cos−1(x).

[H]

Figure 30: Graph of tan−1(x).
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Figure 31: Graph of sec−1(x).

Figure 32: Graph of csc−1(x).
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Figure 33: Graph of cot−1(x).

Note that because the trig functions are not globally invertible, these trig inverses only get you
back to where you started if you are in the range of the trig inverse to begin with. For example,
sin−1(sin(π/4)) = π/4 because π/4 is in [−π/2, π/2], but sin−1(sin(3π/2)) = −π/2, not 3π/2.

1.8 Polynomial functions

Resources

• Khan Academy on Polynomial Functions

• Calculus with Concepts 1.3

• Single and Multi-Variable Calculus 1.6

Polynomials are one of the friendliest types of functions. A polynomial is simply a linear
combination of monomials:

p(x) = cnxn + cn−1xn−1 + · · ·+ c1x + c0 (1.57)

The numbers c1, . . . , cn are called the coefficients of the polynomial. An important property of
polynomials is that they are defined for all R (and are continuous, as we shall see). As has already
been noted, any polynomial with only odd powers is an odd function, whereas any polynomial
with only even powers is an even function (to prove this, simply compute f (−x) and factor out all
of the minus signs).

Every polynomial has a factored form as a product of irreducible polynomials (polynomials
that you can’t factor any further), which over R looks like:

https://www.khanacademy.org/math/algebra-home/alg-polynomials
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p(x) = cn(x − r1)
m1 . . . (x − rk)

mk((x − a1)
2 + b2

1)
n1 . . . ((x − al)

2 + b2
l )

nk (1.58)

The numbers r1, . . . , rk are the real roots of the polynomial, the places where the graph of the
polynomial crosses the x axis. the pairs (a1, b1), . . . , (al , bl) meanwhile are also roots in the sense
that a1 ± b1i, . . . , al ± bli are all roots of the polynomial (recall i =

√
−1 is the imaginary unit), but

they are complex roots not real roots (unless b = 0). That is, if we were working over the field of
complex numbers C we could factor the polynomial further to:

p(x) = cn(x − r1)
m1 . . . (x − rk)

mk(x − z1)
n1(x − z1)

n1 . . . (x − zl)
nl (x − zl)

nl (1.59)

Where zj = aj + bji and zj = aj − bji is the complex conjugate of zj. The natural numbers m1, . . . , mk
and n1, . . . nl are the multiplicities of the corresponding root – you can think of this as the polyno-
mial having multiple copies of the same root. If the multiplicity of a real root is odd, then the graph
of the polynomial will pass through the x axis at the root, changing sign:

Figure 34: Note that for for the root of multiplicity 3 the graph is much flatter near the root, because
the polynomial looks locally like the cubic a(x − r)3 rather than the line a(x − r).

Meanwhile, if the multiplicity of the root is even, then the graph of the polynomial will still go
to zero at the root, but without changing sign, it will “bounce off” the x-axis:
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Figure 35: Note that for the root of multiplicity 4 the graph is much flatter near the root than it is for
the root of multiplicity 2, because the polynomial looks locally like a(x − r)4 instead of a(x − r)2.

Geometrically, complex roots tell you where the graph of the polynomial "changes direction"
and thereby avoids going through the x axis:
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Figure 36: Note that while a1 = 2 tells you approximately where the polynomial will turn (since
close to x = a1 the polynomial looks like p(x) = (const)((x − a1)

2 + b2
1)), it does not tell you exactly

where the local minimum is for the polynomial (in this case it is slightly to the left of x = a1).

It as assumed you know how to find the roots of a quadratic polynomial, or complete the square
if no real roots exist. There are various tricks to factoring a polynomial (putting it into the factored
form (1.58)) when n = 3 or n = 4, although it must be noted that in the general case it is extremely
difficult. One trick is to add and subtract something clever, for example if p(x) = x3 − 2x + 1 then:

p(x) = x3 − 2x + 1

= x3 − x2 + x2 − 2x + 1

= x2(x − 1) + (x − 1)2

= (x2 + x − 1)(x − 1)

= (x − 1 +
√

5
2

)(x − 1 −
√

5
2

)(x − 1)

(1.60)

In this course it will be assumed that you know how to factor such polynomials where possible,
and that you know how to do polynomial long division to factor a polynomial that you have found
a root for.
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To sketch the graph of a polynomial one essentially needs to know three things: the polynomial’s
roots, their multiplicities, and what happens to p(x) as x → −∞ (or +∞). The reason one doesn’t
need to check the sign in between the roots is that if one works left to right, the multiplicity of the
root tells you what it is: the sign changes when the multiplicity of a root is odd and it stays the
same when it is even. To figure out what happens as x → −∞, just look at the leading term in the
polynomial (as everything else will be negligible for |x| sufficiently large).

Example 1.14. Sketch the graph of p(x) = (1 − x)x2(x − 2)2.

Figure 37: The leading term here (multiplying together the leading terms of each factor) is −x5,
which goes to +∞ as x → −∞. We encounter a root of multiplicity 2 at x = 0, so the sign doesn’t
change and the graph just “bounces off” the x axis, then a root of multiplicity 1 at x = 1, so the sign
changes and the graph passes through the x axis, and finally a root of multiplicity 2 at x = 2, so the
sign stays negative and the graph bounces off the x axis in the negative direction.
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1.9 Rational functions and asymptotes

Resources

• Khan Academy on Rational Functions

• Calculus with Concepts 1.3

• Single and Multi-Variable Calculus 1.6

Rational functions are so called not because they are clever, but because they are ratios, specifi-
cally of polynomials:

r(x) =
p(x)
q(x)

(1.61)

The largest possible domain of such a function is of R \ {r1, . . . , rk} where r1, . . . , rk are the roots of
the polynomial q.

Like polynomials, rational functions are characterized by their roots and their asymptotic
or long term behavior as x → ±∞, however unlike polynomials they are also characterized by
discontinuities. We will return later to a more rigorous definition of continuity, but for now just
note that in this class we will encounter three types of discontinuities:

Figure 38: From left to right, these examples have 1) a jump discontinuity, 2) a hole discontinuity or
removable discontinuity, and 3) a divergent discontinuity.

Rational functions only exhibit hole discontinuities and divergent discontinuities – they never
jump:

• A rational function r(x) = p(x)/q(x) has a divergent discontinuity or vertical asymptote at
x = x0 if x = x0 is a root of q of multiplicity m and x = x0 is either not a root of p or it is a
root of p of multiplicity smaller than m.

• A rational function has a hole or a removable discontinuity at x = x0 if x0 is a root of p of
multiplicity m and a root of q of multiplicity n with m ≥ n. The hole can be removed by
simplifying the rational expression, leaving behind a root of multiplicity m − n if m > n.

• A rational function has a root at x = x0 if p(x0) = 0 and q(x0) ̸= 0.

https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:rational-functions
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In addition to roots, holes, and vertical asymptotes, it is also useful to analyze the long term
behavior of rational functions as x → ∞ and x → −∞. As |x| becomes very large, only the leading
order terms of the numerator and denominator of the rational function are significant:

r(x) =
anxn + . . . + a0

bmxm + . . . + b0
∼ an

bm
xn−m as |x| → ∞ (1.62)

Note that there are three qualitative types of long term behavior:

• Case 1: n > m. If n > m then r(x) ∼ (an/bm)xn−m diverges as |x| → ∞. Whether
(an/bm)xn−m blows up to +∞ as x → +∞, to −∞ as x → +∞, and to +∞ as x → −∞,
or −∞ as x → −∞ depends on the signs of an and bm and on whether n − m is even or odd.

• Case 2: n = m. If n = m then r(x) ∼ an/bm approaches a constant as |x| → ∞. In this case
the graph has a horizontal asymptote at y = an/bm.

• Case 3: n < m. If n < m then r(x) ∼ (an/bm)xn−m goes to zero as |x| → ∞, and the graph
has a horizontal asymptote at y = 0.

Example 1.15. Let r(x) = x2(x−2)3

(x−2)(x−1) . This function has a root of multiplicity 2 at x = 0, a hole at
x = 2 that reduces to a root of multiplicity 2 once it is removed, and a vertical asymptote at x = 1.
Moreover p(x) = x2(x − 2)3 with leading order term x5 is a quintic, whereas the denominator
q(x) = (x − 2)(x − 1) has leading order term x2, so asymptotically r(x) behaves like x5−2 = x3. If
we plot all of this information we get something like:

Figure 39: This plot captures the asymptotic behavior of r(x) as being ∼ x3, the vertical asymptote
at x = 1, the root at x = 0 and the hole at x = 2.

In order to actually plot r(x), we should think about what it is doing near its roots, holes, and
asymptotes. When x → 0− (x approaches 0 from below) the numerator of r(x) is negative and
the denominator is positive, so r(x) is negative. Meanwhile 0 is a root of multiplicity 2, so the
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graph should bounce off the x axis in the negative direction. As x → 1−, the numerator of r(x)
is negative while the denominator is positive, so r(x) blows up to −∞. Meanwhile, as x → 1+

the numerator of r(x) is negative and the denominator is also negative, so r(x) blows up to +∞.
Finally, approaching the hole at x = 2 from below the numerator is negative and the denominator
is also negative, so r(x) is positive. But the hole leaves behind a root of multiplicity two, so r(x)
bounces off of the x axis in the positive direction. Taking all of this information into account we can
start to sketch the graph of r(x) as:

Figure 40: This plot starts to fill in the behavior of r(x) near its vertical asymptote and near its roots
and holes.

At which point we can just kind of “connect the dots” to obtain a reasonable sketch of the graph
for r(x):
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Figure 41: The graph of r(x) for −3 ≤ x ≤ 3.

But hang on! Didn’t we say it should behave like x3 as |x| becomes large? Well yes, but 3 is not
particularly large. Let’s plot the same function in the interval [−20, 20]:

Figure 42: The graph of r(x) for −20 ≤ x ≤ 20.

You can see that as promised it starts to look pretty close to x3 as |x| → ∞.

Let’s do another example, this time one with a horizontal asymptote in addition to a vertical
asymptote.
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Example 1.16. Let r(x) = 2x(x+1)
(x−1)2 . To leading order in the numerator in the denominator r(x) ∼

2x2/x2 = 2. Thus we have a horizontal asymptote y = 2. We also have a vertical asymptote at
x = 1, and two roots each of multiplicity 1 at −1 and 1. We work from left to right. Just to the left of
−1, the numerator and the denominator of r(x) are both positive. Since −1 is a root of multiplicity
1, the function must switch signs at −1, and then again at 0. As x → 1−, both the numerator and
the denominator of r(x) are positive, and so the function blows up to +∞. Similarly for x → 1+.
With all this information we may then sketch the graph of r(x):

Figure 43: Graph of r(x) when −4 ≤ x ≤ 4.
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2 Limits, Continuity, and Derivatives

2.1 Limits, Epsilon-Delta Calculus

Resources

• Khan Academy on Limits and Continuity

• 3Blue1Brown on Limits

• 3Blue1Brown on Epsilon-Delta Calculus and L’Hôpital’s rule

• Calculus with Concepts 2.2, 2.3, 2.4

• Single and Multi-Variable Calculus 1.8

The intuitive notion of a limit is just that, pretty intuitive:

lim
x→c

f (x) = L ⇐⇒ f (x) “approaches” L as x “approaches” c (2.1)

The tricky part here is the word approaches, but hopefully what it means will become clear after a
few examples before we rigorously define the limit.

Example 2.1. What is limx→2 x2? Well we might guess 4 since 22 = 4, but the limit doesn’t care
about the value of the function at c, just what happens as we get closer and closer to it. So let’s look
at x2 for a few numbers that get closer and closer to 2:

x x2

1.9 3.61
1.99 3.9601
1.99 3.996001

...
...

Looks pretty good for the limit being 4, so let’s also check what x2 does for values of x getting
closer and closer to 2 from above:

x x2

2.1 4.41
2.01 4.0401
2.001 4.004001

...
...

We haven’t proved it, because we haven’t even really said what a limit is yet, but with our
notion of limit we seem to have quite a lot of evidence that limx→2 x2 = 4 (and this is in fact the
case).

Let’s do an example where the limx→c f (x) turns out to be different from f (c).

Example 2.2. Let g(x) = x−2
x2−4 and consider limx→2 g(x). The function g(x) is a rational function

with a hole at x = 2 and a vertical asymptote at x = −2. Away from x = 2 we have

g(x) =
1

x + 2
for x ̸= 2 (2.2)

https://www.khanacademy.org/math/calculus-1/cs1-limits-and-continuity
https://www.3blue1brown.com/lessons/limits
https://www.3blue1brown.com/lessons/epsilon-delta
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Thus we might suspect that limx→2 g(x) = 1
2+2 = 1

4 . We would be right! But let’s look at a few
values of g(x) as x gets closer and closer to 2 anyway:

x g(x) = 1
x+2

1.9 1
3.9 = 0.256 . . .

1.99 1
3.99 = 0.2506 . . .

...
...

2.1 1
4.1 = 0.244 . . .

2.01 1
4.01 = 0.249 . . .

...
...

It would appear that indeed limx→2 g(x) = 1
4 even though g(2) is not defined. It’s worth

repeating, the limit doesn’t care about the value of the function at the limit point. Indeed, even if
we defined g(x) arbitrarily to take some other value at 2, the limit would remain unchanged. Let
g̃ : R → R be defined via:

g̃(x) =

{
g(x) x ̸= 2
1 x = 2

(2.3)

The function g̃ has graph:

Figure 44: The function g̃ is discontinuous at x = 2.

Here limx→2 g̃(x) is still equal to 1
4 even though g̃(2) = 1 (g̃ agrees with g everywhere except

for 2 and the limit doesn’t care about what happens at 2).
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Before going any further, we should probably ask the question “why are limits useful?” Well,
they turn out to be useful for understanding lots of phenomena “in the long term” or “near a critical
point,” but in this class their most powerful application will be in defining the derivative. Not to
get too ahead of ourselves, but we will be interested in the following quantity:

f ′(x) (aka d f
dx ) := lim

h→0

f (x + h)− f (x)
h

(2.4)

That is, f ′(x) is defined to be the limit of the slopes of the secant lines from x to x+ h as h approaches
0. But back to limits for the moment, we need a formal, rigorous definition of a limit. The word
“approach” is doing a lot of work here, and we need to state its meaning with mathematical
precision. Why? Well

• This is math! We need to define what we’re working with.

• If we want to understand useful properties of limits, we need a formal definition in order to
prove those properties.

• The formal definition of the limit is actually the first glimpse most students get of the
wonderful field of real analysis. The relationship between calculus and real analysis is sort of
analogous to the relationship between anatomy and microbiology, or possibly even organic
chemistry. Real analysis is the “underpinning” of everything we will do in this class.

Definition. We say that limx→c f (x) = L if and only if for every ϵ > 0 there exists a δ > 0 such that
whenever |x − c| < δ we have | f (x)− L| < ϵ.

If this definition makes little sense, don’t panic, you’re in good company. Hopefully by the end of
this section we will have shed some light on why it is the correct definition of the limit. What this
definition says is that a limit is really a game: I hand you an ϵ > 0 that I want to squeeze f (x) close
to L with, that is I want f (x) ∈ (L − ϵ, L + ϵ). Your goal is to produce a δ > 0 to make this happen
whenever x is within δ of c, that is x ∈ (c − δ, c + δ). If you can always win at this game, no matter
how tiny an ϵ I hand you (but still greater than zero!), then we say limx→c f (x) = L.
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Figure 45: The ϵ-game for limx→2 x3 = 8. If you can win this game no matter how small an ϵ you
are given, then the limit is correct.

Lets do a few examples of proving limits using this ϵ − δ definition.

Example 2.3. Prove that limx→2 5x = 10. Let’s begin. I hand you an ϵ > 0, and you have to hand
me back a δ > 0 so that whenever |x − 2| < δ we will get |5x − 10| < ϵ. Let’s see if we can upper
bound |5x − 10| in terms of δ:

|5x − 10| = 5|x − 2|
< 5δ

(2.5)

Where to get the second line we used the fact that we can assume |x − 2| < δ! We want this upper
bound to be ϵ, and we can pick any δ > 0, so pick δ = ϵ

5 to get

|5x − 10| < 5
ϵ

5
= ϵ (2.6)

Thus, triumphant, you hand me back δ = ϵ
5 with the guarantee that whenever |x − 2| < δ I will get

|5x − 10| < ϵ. But wait I say! That was just one ϵ, I have infinitely many more for you to produce a
δ for! You shake your head, “ϵ was arbitrary, hand me ϵ and I will hand you back δ = ϵ/5 every
time, I will always win the game.” You have proved that limx→2 5x = 10!
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Often times we will use the shorthand ∀ to mean “For All”, ∃ to mean “There Exists”, : to mean
“Such That” and =⇒ to mean “Implies.” With these notations available the definition of the limit
becomes the rather frightening set of hieroglyphics:

lim
x→c

f (x) = L ⇐⇒ ∀ϵ > 0∃δ > 0 : |x − c| < δ =⇒ | f (x)− L| < ϵ (2.7)

When you see such expressions try to read them out loud.

Example 2.4. Prove limx→2 x2 = 4. We motivated this limit earlier by simply looking at x2 for
values of x closer and closer to 2, but now we will prove it. Fix ϵ > 0, then

|x2 − 4| = |x − 2||x + 2|
< δ|x + 2|

(2.8)

It might seem like we have a problem here, because we need to upper bound |x + 2| which is in
general an unbounded function, but recall that we have |x − 2| < δ and we may set δ however
we wish so long as it is greater than zero. Thus we will restrict ourselves to δ < 1 in which
case |x − 2| < δ < 1 implies that x ∈ (1, 3), which implies that |x + 2| ∈ (3, 5) and in particular
|x + 2| < 5. Thus if δ ≤ 1 then:

|x2 − 4| < 5δ (2.9)

We need this upper bound to be ϵ, while still maintaining δ ≤ 1, so set δ = min(1, ϵ
5 ) and we

conclude

|x2 − 4| < ϵ (2.10)

Thus, you hand me ϵ and I hand you back δ = min(1, ϵ
5 ), which we have just shown guarantees

that |x − 2| < δ implies |x2 − 4| < ϵ, so limx→2 x2 = 4.

Theorem 2.1. Let f and g be functions that are defined on an interval around c such that limx→c f (x) and
limx→c g(x) exist.

(a) limx→c b f (x) = b limx→c f (x).

(b) limx→c f (x) + g(x) = limx→c f (x) + limx→c g(x).

(c) limx→c f (x)g(x) =
(

limx→c f (x)
)(

limx→c g(x)
)

.

(d) limx→c f (x)/g(x) =
(

limx→c f (x)
)

/
(

limx→c g(x)
)

so long as limx→c g(x) ̸= 0.

Proof. To prove (a) let limx→c f (x) = L. We should like to show that limx→c b f (x) = bL. From the
the fact that limx→c f (x) = L and the definition of the limit we know that ∀ϵ > 0∃δ > 0 : |x − c| <
δ =⇒ | f (x)− L| < ϵ.

Fix ϵ > 0, then

|b f (x)− bL| = |b|| f (x)− L| (2.11)

Now choose δ such that | f (x)− L| < ϵ/|b| (we can do this precisely because limx→c f (x) = L).
Then

|b f (x)− bL| < |b|(ϵ/|b|) = ϵ (2.12)
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Thus we have proved that limx→c b f (x) = bL = b limx→c f (x). □

To prove (b) let limx→c f (x) = L and limx→c g(x) = M. Fix ϵ > 0. We will use the triangle
inequality, which says that |x + y| ≤ |x|+ |y|, to upper bound | f (x) + g(x)− (L + M)| as follows:

| f (x) + g(x)− (L + M)| ≤ | f (x)− L|+ |g(x)− M| (2.13)

Then since limx→c f (x) = L and limx→c f (x) = M we may find δ1 and δ2 so that |x − c| < δ1 implies
| f (x)− L| < ϵ/2 and |x − c| < δ2 implies |g(x)− M| < ϵ/2. Set δ = min(δ1, δ2) then |x − c| < δ
implies

| f (x) + g(x)− (L + M)| < ϵ/2 + ϵ/2 = ϵ (2.14)

Thus we have proved limx→c f (x) + g(x) = L + M = limx→c f (x) + limx→c g(x). □

To prove (c) we will have to be a bit clever and add and subtract the right thing inside | f (x)g(x)−
LM|. Fix ϵ > 0, then

| f (x)g(x)− LM| = | f (x)g(x)− Lg(x) + Lg(x)− LM|
≤ | f (x)g(x)− Lg(x)|+ |Lg(x)− LM|
= |g(x)|| f (x)− L|+ |L||g(x)− M|

(2.15)

Now find δ1 so that |g(x) − M| < min(M, ϵ
2L ) whenever |x − c| < δ1. We can do this because

limx→c g(x) = M. In this case |g(x)| ≤ 2M since g(x) ∈ (0, 2M) and |L||g(x)− M| < ϵ
2 , thus:

| f (x)g(x)− LM| ≤ 2M| f (x)− L|+ ϵ

2
(2.16)

Meanwhile if we find δ2 so that | f (x)− L| < ϵ
4M (which we can do because limx→c f (x) = L) and

set δ = min(δ1, δ2) then for any |x − c| < δ we have

| f (x)g(x)− LM ≤ 2M
ϵ

4M
+

ϵ

2
= ϵ (2.17)

Thus indeed limx→c f (x)g(x) = LM =

(
limx→c f (x)

)(
limx→c g(x)

)
. □

To prove (d) we just need to prove that limx→c g(x) = M implies limx→c
1

g(x) =
1
M for M ̸= 0, since

if this is true then we can use (c) to write

lim
x→c

f (x)
g(x)

= lim
x→c

f (x) · 1
g(x)

= lim
x→c

f (x) lim
x→c

1
g(x)

= L · 1
M

=
L
M

(2.18)

It remains to prove that limx→c g(x) = M implies limx→c
1

g(x) =
1
M when M ̸= 0. Fix ϵ > 0, then

| 1
g(x)

− 1
M

| = |g(x)− M|
M|g(x)| (2.19)

Now find δ so that |g(x)− M| < min(M
2 , M2

2 ϵ) whenever |x − c| < δ. Note that it is at this point
that the proof would fail at M = 0, since we would be setting δ = min(0, 0) = 0 which is not
allowed. In this case the denominator in the above expression is lower bounded as M|g(x)| ≥ M2

2
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since |g(x)| ∈ (M/2, 3M/2), meanwhile the numerator is upper bounded by |g(x)− M| ≤ M2

2 ϵ.
Thus

| 1
g(x)

− 1
M

| = |g(x)− M|
M|g(x)| <

(M2/2)ϵ
(M2/2)

= ϵ (2.20)

This concludes the proof that limx→c( f (x)/g(x)) = (limx→c f (x))/(limx→c g(x)) whenever limx→c g(x) ̸=
0. □

The wonderful thing about Theorem 2.1 is that now we can use it to compute a whole bunch of
limits without resorting to ϵ − δ calculus (fun as it is). But first, we will also need the concept of
a continuous function. We already gave examples of the types of discontinuities in Figure 38, so
intuitively a continuous function is simply a function that doesn’t experience any of those types of
discontinuities on its domain. But actually now that we have the limit, we can be precise about
what we mean:

Definition. A function is called continuous at a point y in its domain if limx→y f (x) = f (y). It is
called continuous if it is continuous at every point in its domain.

For example, all polynomials and exponential functions are continuous, ln(x) is continuous on
(0, ∞), 1

x is continuous away from zero, tan(x) is continuous away from {π
2 + πk : k ∈ Z}, etc. As

it turns out Theorem 2.1 immediately buys us analogous properties for continuity:

Theorem 2.2. Let f (x) and g(x) be continuous functions at x0. Then

(a) k f (x) is continuous at x0 for any constant k.

(b) f (x) + g(x) is continuous at x0.

(c) f (x)g(x) is continuous at x0.

(d) f (x)/g(x) is continuous at x0 so long as g(x0) ̸= 0.

Proof. For example limx→x0 k f (x) = k limx→x0 f (x) = k f (x0) = (k f )(x0). The proof is identical for
(b)− (d), just using the corresponding property of limits.

The astute reader might note that the definition of a limit gives us the following ϵ − δ definition
of continuity:

f is continuous at y ⇐⇒ ∀ϵ > 0∃δ > 0 : |x − y| < δ =⇒ | f (x)− f (y)| < ϵ (2.21)

We shall not use this definition in this course, however, preferring to leave it in the form limx→y f (x) =
f (y).

Example 2.5. Compute limx→ π
4

sin(x) tan(x). Both sin(x) and tan(x) are continuous at π/4 and
thus so is their product. We may therefore pass the limit inside to get sin(π/4) tan(π/4) = 1√

2
· 1 =

1√
2
.
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3 Integrals and the Fundamental Theorem of Calculus
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