Full name(s):

Questions

1. Find the arc length of each of the following curves from x = 0 to x = s:

(a)
$$f(x) = \cos(x)$$

(b)
$$f(x) = \ln(x+1)$$

(b) f(x) = m(x+1)(c) $f(x) = \sqrt{4-x^2}$

Find the volume of the solid of revolution around the *xaxis*:

- (a) $f(x) = x^3$ from x = 0 to x = 1
- (b) $f(x) = \sin \text{ from } x = 0 \text{ to } x = \pi.$
- 2. Find the volume of the solid of revolution around the y axis for $f(x) = x^3$.
- 3. Find the volume of the solid of revolution between f(x) = x and $g(x) = x^3$ around the x axis from x = 0 to x = 1.
- 4. Graph (approximately) each of the following polar curves:

1.
$$r(\theta) = \frac{1}{2}\theta$$

2. $r(\theta) = \ln(e + \theta/2\pi)$
3. $r(\theta) = \cos(\theta)$

3. $r(\theta) = \cos(\theta)$ 4. $r(\theta) = 1 + \sin(\theta)$

Compute each of the following:

- 1. The arc length of the spiral $(\theta) = \theta$ from $\theta = 0$ to $\theta = 2\pi$.
- 2. The area of the first petal of $r(\theta) = 3\sin(2\theta)$.
- 3. The spiraling area between $r(\theta) = \theta + 1$ from $\theta = 0$ to $\theta = 2\pi$.