\qquad -

Questions

1. Use the integral test to determine whether each of the following series converges absolutely:
(a) $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$
(b) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \ln (k)}$
(c) $\sum_{k=1}^{\infty} \frac{2 k}{k^{3}+k}$
(d) $\sum_{k=1}^{\infty} \frac{\ln (n)}{n}$
2. Show using ϵ calculus that $s_{n}=1+1 / n$ is Cauchy. This implies it has a limit, what is the limit? Prove the limit using ϵ calculus.
3. Choose between the integral test, the comparison test, and the limit comparison test to say whether each of the following series converges absolutely:
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(b) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n+1}+n^{3 / 2}}$
(d) $\sum_{n=1}^{\infty} \frac{1}{\cos (n)+e^{n}}$
(e) $\sum_{n=1}^{\infty} \frac{n}{\pi^{n}-n^{2}}$
