\qquad - .

Questions

1. Determine the radius of convergence of each of the following power series, as well as the behavior at the endpoints the radius of convergence is finite:
(a) $\sum_{n=0}^{\infty} \frac{n^{2}}{n!} x^{n}$
(b) $\sum_{n=0}^{\infty} \frac{1}{n} x^{n}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} x^{n}$
(d) $\sum_{n=2}^{\infty} \frac{x^{n}}{n \ln (n)}$
(e) $\sum_{n=0}^{\infty} \frac{(1+n)^{2 n}}{\left(1+n+2 n^{2}\right)^{n}} x^{n}$
(f) $\sum_{n=1}^{\infty} \frac{n^{3 n}}{(3 n)!} x^{n}$

Determine the first three terms of the Taylor expansion for each of the following functions:

1. $f(x)=\tan (x)$
2. $f(x)=\ln (1-x)$
3. $f(x)=\frac{x+1}{x-1}$ (hint: it may be helpful to write f using a partial fraction expansion first)
4. $f(x)=e^{\sin (x)}$
5. Show via term by term integration of the series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ that in some interval around zero $\ln (1-x)$ has Taylor series:

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}
$$

3. Find the radius of convergence of the Taylor series for $\ln (1+x)$. What is the convergence behavior at the endpoints?
