Full name(s): _____

Questions

- 1. Determine the radius of convergence of each of the following power series, as well as the behavior at the endpoints the radius of convergence is finite:
 - (a) $\sum_{n=0}^{\infty} \frac{n^2}{n!} x^n$ (b) $\sum_{n=0}^{\infty} \frac{1}{n} x^n$ (c) $\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$ (d) $\sum_{n=2}^{\infty} \frac{x^n}{n \ln(n)}$
 - (e) $\sum_{n=0}^{\infty} \frac{(1+n)^{2n}}{(1+n+2n^2)^n} x^n$
 - (f) $\sum_{n=1}^{\infty} \frac{n^{3n}}{(3n)!} x^n$

Determine the first three terms of the Taylor expansion for each of the following functions:

- 1. $f(x) = \tan(x)$
- 2. $f(x) = \ln(1-x)$
- 3. $f(x) = \frac{x+1}{x-1}$ (hint: it may be helpful to write f using a partial fraction expansion first)
- 4. $f(x) = e^{\sin(x)}$
- 2. Show via term by term integration of the series $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ that in some interval around zero $\ln(1-x)$ has Taylor series:

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

3. Find the radius of convergence of the Taylor series for $\ln(1 + x)$. What is the convergence behavior at the endpoints?