\qquad .

Questions

1. Sketch a graph of $\tan (x), \tan ^{2}(x), \sec (x)$, and $\cos (2 x), \cos ^{-1}(x), \tan ^{-1}(x)$, and $\cot ^{-1}(x)$. Try to do this without looking them up, just thinking about the graphs for $\sin (x)$ and $\cos (x)$.
2. Rewrite the following expressions in terms of $\sin (x)$ and $\cos (x)$:

- $\frac{\sec ^{3}(x)}{\tan (2 x)}$
- $\csc (2 x+\pi) \sin (x)$
- $\tan (x / 2)+\cot (x / 2)$

Evaluate each of the following expressions:

- $\tan \left(\sin ^{-1}(x)\right)$
- $\csc \left(\sec ^{-1}(x)\right)$
- $\cos \left(\csc ^{-1}(x)\right)$

3. Prove that $\sec ^{2}(x)-\tan ^{2}(x)=1$.
4. Graph the following functions, labeling horizontal and vertical asymptotes and holes:

- $f(x)=\frac{x-2}{x^{2}-4}$
- $f(x)=\frac{1}{x^{3}-4 x}$
- $f(x)=\frac{3 x+1}{x-2}$
- $f(x)=\frac{x^{2}+2}{x-1}$
- $f(x)=\frac{x^{2}+3}{x^{2}-9}$
- $f(x)=\frac{1}{x^{3}-3 x^{2}+3 x-1}$

5. Write the following functions over a single fraction bar and then graph them

- $f(x)=\frac{1}{x-2}-\frac{x}{x+2}$
- $f(x)=\frac{5 x+4}{5 x}-\frac{5 x-x^{2}}{x+2}$

6. Challenge Find an inverse for $f(x)=\sin (x)+\cos (x)$. What are the domain and range of this inverse?
