Full name(s): _____

Questions

- 1. Sketch a graph of $\tan(x)$, $\tan^2(x)$, $\sec(x)$, and $\cos(2x)$, $\cos^{-1}(x)$, $\tan^{-1}(x)$, and $\cot^{-1}(x)$. Try to do this without looking them up, just thinking about the graphs for $\sin(x)$ and $\cos(x)$.
- 2. Rewrite the following expressions in terms of sin(x) and cos(x):
 - $\frac{\sec^3(x)}{\tan(2x)}$
 - $\csc(2x+\pi)\sin(x)$
 - $\tan(x/2) + \cot(x/2)$

Evaluate each of the following expressions:

- $\tan(\sin^{-1}(x))$
- $\csc(\sec^{-1}(x))$
- $\cos(\csc^{-1}(x))$
- 3. Prove that $\sec^2(x) \tan^2(x) = 1$.
- 4. Graph the following functions, labeling horizontal and vertical asymptotes and holes:
 - $f(x) = \frac{x-2}{x^2-4}$
 - $f(x) = \frac{1}{x^3 4x}$
 - $f(x) = \frac{3x+1}{x-2}$
 - $f(x) = \frac{x^2 + 2}{x 1}$
 - $f(x) = \frac{x^2+3}{x^2-9}$
 - $f(x) = \frac{1}{x^3 3x^2 + 3x 1}$

5. Write the following functions over a single fraction bar and then graph them

- $f(x) = \frac{1}{x-2} \frac{x}{x+2}$
- $f(x) = \frac{5x+4}{5x} \frac{5x-x^2}{x+2}$

6. Challenge Find an inverse for $f(x) = \sin(x) + \cos(x)$. What are the domain and range of this inverse?