\qquad - .

Questions

1. Use algebra to evaluate the following limits, interpret them as a derivative:

- $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$
- $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$
- $\lim _{h \rightarrow 0} \frac{(2+h)^{-1}-1 / 2}{h}$
- $\lim _{h \rightarrow 0} \frac{(-1+h)^{-2}-1}{h}$

2. Let k, m be constants. Find the derivative function $\frac{d f}{d x}(x)$ for each of the following:

- $f(x)=k x^{3}$
- $f(x)=k x+m$
- $f(x)=\frac{k}{x}$
- $f(x)=k$
- $f(x)=k x^{2}+x$

3. Show that the derivative operation is linear, that is if a_{1} and a_{2} are constants then show that

$$
\begin{equation*}
\frac{d}{d x}\left(a_{1} f+a_{2} g\right)(x)=a_{1} \frac{d f}{d x}(x)+a_{2} \frac{d g}{d x}(x) \tag{1}
\end{equation*}
$$

Assume f and g are differentiable for all x.
4. Estimate the following derivatives:

- $\sin ^{\prime}(0)$
- $\tan ^{\prime}(0)$
- $\ln ^{\prime}(2)$
- $\frac{d 3^{x}}{d x}(3)$

5. Try to graph the derivative of $\sin (x)$ from the graph of $\sin (x)$. Do so on the same plot.
6. Do the same for each of the following functions:

7. If a car has position $x(t)=.67 t^{2}+2 t$ meters at t seconds, what is there velocity at $t=2$?
