\qquad -

Questions

1. Compute derivative of $\tan (x)$ by writing it in terms of $\sin (x)$ and $\cos (x)$ and using the quotient rule. Simplify.
2. Do the same for $\sec (x), \csc (x)$, and $\cot (x)$.
3. Use the derivative rule for inverse functions to compute:

- $\frac{d}{d x} \cos ^{-1}(x)$.
- $\frac{d}{d x} \tan ^{-1}(x)$.
- $\frac{d}{d x} \sec ^{-1}(x)$.
- $\frac{d}{d x} \csc ^{-1}(x)$.
- $\frac{d}{d x} \cot ^{-1}(x)$.

4. Compute derivatives of:

- $\sin (\ln (x))$
- $\ln (1+\sin (x))$
- $\tan ^{-1}\left(\sqrt{x^{2}+1}\right)$
- $\ln \frac{2^{x}-1}{2^{x}+1}$
- $\sin ^{-1}\left(\frac{2}{\pi} \frac{x^{2}}{x^{2}+1}\right)$

5. Compute the second derivatives of:

- $f(x)=\frac{1}{x}$.
- $f(x)=\sin (x)$
- $f(x)=e^{4} x$
- $f(x)=\frac{x+1}{x-1}$

6. A ball is moving with trajectory $x(t)=10 t$ and $y(t)=8 t-5 t^{2}$. What is the ball's vertical acceleration?
7. A spherical balloon is being inflated so that it's surface area is increasing at $1 \mathrm{~cm}^{2} / \mathrm{s}$. How fast is its volume increasing?
