Full name(s): _____

Questions

- 1. Compute derivative of tan(x) by writing it in terms of sin(x) and cos(x) and using the quotient rule. Simplify.
- 2. Do the same for $\sec(x)$, $\csc(x)$, and $\cot(x)$.
- 3. Use the derivative rule for inverse functions to compute:
 - $\frac{d}{dx}\cos^{-1}(x)$.
 - $\frac{d}{dx} \tan^{-1}(x)$.
 - $\frac{d}{dx} \sec^{-1}(x)$.
 - $\frac{d}{dx} \csc^{-1}(x)$.
 - $\frac{d}{dx} \cot^{-1}(x)$.
- 4. Compute derivatives of:
 - $\sin(\ln(x))$
 - $\ln(1 + \sin(x))$
 - $\tan^{-1}(\sqrt{x^2+1})$
 - $\ln \frac{2^x 1}{2^x + 1}$
 - $\sin^{-1}(\frac{2}{\pi}\frac{x^2}{x^2+1})$
- 5. Compute the second derivatives of:
 - $f(x) = \frac{1}{x}$.
 - $f(x) = \sin(x)$
 - $f(x) = e^4 x$
 - $f(x) = \frac{x+1}{x-1}$
- 6. A ball is moving with trajectory x(t) = 10t and $y(t) = 8t 5t^2$. What is the ball's vertical acceleration?
- 7. A spherical balloon is being inflated so that it's surface area is increasing at $1 \ cm^2/s$. How fast is its volume increasing?