\qquad -

Questions

1. Use a tangent approximation to estimate the following. Compute the true value and the error in each case.

- $\sqrt{10200}$
- $\sqrt{8.95}$
- $\sin (1.5)$
- $\log _{2}(4.4)$
- $\sec (.5)$
- 1.1^{10}

2. Find the tangent line approximation to each of the following at $x=1$

- $f(x)=\frac{1}{1+\sqrt{x}}$
- $f(x)=\csc \left(\frac{\pi}{2} x^{2}\right)$
- $f(x)=\tan ^{-1}\left(\frac{1}{x}\right)$
- $f(x)=\ln \left(\frac{x+1}{4-x}\right)$

3. A rectangle has one side of 10 cm . How fast is the area of the rectangle changing at the instant when the other side is 12 cm and increasing at 3 cm per minute?
4. A right triangle has one leg of 7 cm . How fast is its area changing at the instant that the other leg has length 10 cm and is decreasing at 2 cm per second?
5. When the growth of a spherical cell depends on the flow of nutrients through the surface, it is reasonable to assume that the growth rate, $d V / d t$, is proportional to the surface area, S . Assume that for a particular cell $d V / d t=13 S$. At what rate is its radius r increasing?
6. The length of each side of a cube is increased at a constant rate. Which is greater, the relative rate of change of the volume of the cube, $(1 / V) d V / d t$, or the relative change of the surface area of the cube, $(1 / A) d A / d t$?
7. A potter forms a piece of clay into a cylinder. As he rolls it, the length, L, of the cylinder increases and the radius, r, decreases. If the length of the cylinder is increasing at 0.1 cm per second, find the rate at which the radius is changing when the radius is 1 cm and the length is 5 cm .
