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Gabor Frames, the Zak Transform and Balian-Low
Chris B Dock

Abstract

The Zak Transform, introduced by Gelfand and rediscovered by Zak, has proven to be a transformational tool in studying
the Gabor frames ubiquitous in time-frequency analysis. The utility of the Zak transform is shown to arise from the conjugacy
equivalence of the Gabor frame operator to multiplication by the square magnitude of the Zak transform. The Zak transform can
also be elucidated as a flexible variant of the Poisson summation formula, hence providing a link between the theory of Gabor
frames and more classical harmonic analysis. This theory is employed in the study of Balian-Low type uncertainty principles and
in the development of the alternate uncertainty principle on Wiener Amalgam Space.

I. GABOR SYSTEMS

Gabor systems, alternately Weyl-Heisenberg systems, were studied in signal processing as a type of localized discrete Fourier
transform and arose naturally in work on operator algebras by Von Neumann. They are deeply connected to both quantum
mechanics and signal processing and provide a myriad of fascinating and difficult questions in pure mathematics. We focus
our attention on so called regular Gabor frames, those that tile the time-frequency “phase plane” into a repeating lattice.

Definition 1. (Gabor systems). Given a generating (window) function g ∈ L2(R) and a, b ∈ R>0, the corresponding (regular)
Gabor system is given by:

Ga,b(g) = {MmbTnag|m,n ∈ Z} (1)

where Tτ (g)(t) = g(t− τ) is the translation operator on L2(R) and Mω(g)(t) = e2πiωtg(t) is the modulation operator.

We shall see that the following transform operator plays a similar role to that of the Fourier transform in understanding
complex exponential bases for L2(R). Moreover, it plays a fundamental role in developing the corresponding uncertainty results
for Gabor systems.

Definition 2. (The Zak transform). For a fixed dilation parameter λ > 0 and for (x, ξ) ∈ R × T the Zak transform of a
function f ∈ Cc(R) is defined

Zλ : Cc(R)→ C(R× T)

Zλ(f)(x, ξ) = λ−1/2
∑
n∈Z

f(λ(x− n))e2πinξ (2)

The continuity of the Zak transform for f ∈ Cc(R) follows immediately from the fact that all but finitely many terms in
the sum are zero. We may extent this definition to f ∈ L2(R) (and indeed beyond to distributions) by noting that

Zλ(f)(x+m, ξ) = e−2πimξZλ(f)(x, ξ) (3)

This motivates us to define the fundamental domain of the image of the Zak transform as Q = [0, 1)×T, and indeed we shall
prove

Lemma 1. Given λ > 0, the Zak transform Zλ is a unitary map of L2(R)→ L2(Q).

Proof. Consider λ = 1. Given f ∈ L2(R), consider {Fk}k∈Z

Fk(x, ξ) = f(x− k)e2πikξ (4)

Clearly each Fk belongs to L2(Q) since Q is compact. Then note that∑
k∈Z
||Fk||2L2(Q) =

∑
k∈Z

∫ 1

0

∫ 1

0

|Fk(x, ξ)|2dxdξ =
∑
k∈Z

∫ 1

0

|f(x− k)|2dx = ||f ||2L2(R) <∞ (5)

Which is more, note that for k 6= j we have

〈Fk, Fj〉L2(R) =

∫ 1

0

f(x− k)f(x− j)
(∫ 1

0

e2πi(k−j)ξdξ

)
dx = 0 (6)

Hence

||Z1(f)(x, ξ)||2L2(Q) = ||
∑
k∈Z

Fk||2L2(Q) =
∑

k ∈ Z||Fk||L2(Q) = ||f ||2 (7)
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This concludes the proof for the case λ = 1. For the general case, note that Zλ(f) = Z1(Dλ−1f) is a composition of unitary
operators. �
Remark The Zak transform is precisely the Fourier series on T corresponding to the the coefficients {Tnag}n∈Z, hence
g(x−na) = (F−1ξ Za(g))(x, n) = (F−1ξ Za(g))(x−na, 0). The latter equality is immediate from the fact that x and n appear
only as x− na.
We will also need the following

Lemma 2. For λ > 0 and f ∈ L2(R) the following hold
(i) If f is continuous and for some C > 0 f satisfies

|f(x)| ≤ C

1 + |x|2
∀x ∈ R (8)

, then Zλf is continuous on R2.
(ii) If Zλf is continuous on R2 then there exists (x, ξ) ∈ R2 such that Zλ(f)(x, ξ) = 0.

The proof of of (ii) would take us too far afield but can be found in [9]. For (i) we observe that

|Zλ(f)(x, ξ)− Zλ(f)(y, ω)| = λ−1/2|
∑
n∈Z

f(λ(x− na))e2πiξ − f(λ(y − na))e2πiω|

≤ λ−1/2
∑
n∈Z
|f(λ(x− na))e2πi(ξ−ω) − f(λ(y − na))|

= λ−1/2
∑
n∈Z
|f(λ(x− na))e2πi(ξ−ω) − f(λ(y − na))e2πi(ξ−ω) + f(λ(y − na))e2πi(ξ−ω) − f(λ(y − na))|

≤ λ−1/2
∑
n∈Z
|f(λ(x− na))− f(λ(y − na))|+ λ−1/2

∑
n∈Z

C

1 + λ2(y − na)2
|e2πin(ξ−ω) − 1|

(9)

Given ε > 0 the fact thatf(x) ≤ C/(1 + |x|2) implies that N can be chosen large enough so that the tail of the first sum is
less than ε/4. The first N terms in the first sum can then be made less than ε/4 using the continuity of f . Finally, the second
sum can be made to be less than ε/2 by employing the continuity of the complex exponential. �

The deep connection between Gabor frames and the Zak transform is made clear by the following theorem, which can
be extended to the case ab ∈ Q (for ab irrational other tools than the Zak transform are needed).

Theorem 1. Let g ∈ L2(R) and a, b > 0 with ab = 1. Then
(i) Ga,b(g) is complete in L2(R) if and only if Za(g) 6= 0 almost everywhere.

(ii) Ga,b(g) is a Bessel sequence with bound B if and only if |Za(g)|2 ≤ B almost everywhere.
(iii) Ga,b(g) is a Riez basis for L2(R) with bounds A and B if and only if A ≤ |Za(g)|2 ≤ B almost everywhere.
(iv) Ga,b(g) is an orthonormal basis for L2(R) if and only if |Za(g)| = 1 almost everywhere.

We note the following corollary:

Corollary 1. Let g be a continuous function with compact support, then
1) Ga,b(g) cannot be an orthonormal basis for L2(R)
2) Ga,b(g) cannot be a Riesz basis for L2(R)

Proof. We follow [5]. Let V ⊂ L2(R) be given as

V = {f ∈ L2(R)|Za(f) is bounded} (10)

The bounded functions are dense in L2(Q) and Lemma 1 tells us that L2(Q) is the image of L2(R) under the unitary
transformation Za, hence we obtain that V is dense in L2(R). Now suppose that f ∈ V , then first note that since ab = 1 we
have (treating the Zak transform as an operator)

ZaMmbTnag = Zae
2πimbxg(x− na)

= a−1/2
∑
k∈Z

e2πimba(x−k)g(a(x− k)− na)e2πikξ

= a−1/2
∑
k∈Z

e2πimxe2πikξg(a(x− k − n))

= e2πimxe2πinξa−1/2
∑
l∈Z

e2πilξg(a(x− l)) = Mm,nZag

(11)
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Where Mm,n = e2πimxe2πinξ provides a Fourier basis for Q. Using this and the fact that Za is unitary we obtain

〈f,MmbTnag〉L2(R) = 〈Zaf, ZaMmbTnag〉L2(Q) = 〈Mm,nZag〉L2(Q)

= 〈Za(f)Za(g),Mm,n〉L2(Q)

(12)

Assume Za(g) 6= 0 almost everywhere, then if f 6= 0 we have that Za(f)Za(g) is not the zero function, hence since Mm,n

is an orthonormal basis for Q there exists p and q such that 〈Za(f)Za(g),Mp,q〉L2(Q) 6= 0. From this and (12) we conclude
that Ga,b(g) is complete in L2(R). On the other hand assume that Za(g) is zero on a set of positive measure B, then choose
f such that Zaf = 1Q\B . In this case 〈f,MmbTnag〉L2(R) = 0 for all m,n ∈ Z, hence Ga,b(g) cannot be complete in L2(R).
In order to prove (ii)-(iv) we note that if F ∈ L2(R) then since Mm,n is an orthonormal basis for L2(Q)∫

Q

|FZag|2 =
∑
m,n∈Z

|〈FZag,Mm,n〉L2(Q)|2 =
∑
m,n∈Z

|〈F,Mm,nZag〉L2(Q)|2 (13)

By the assumption of (ii) the leftmost integral satisfies∫
Q

|FZag|2 ≤ B||F ||L2(Q) (14)

Moreover this inequality holds for all F in L2(Q) only when the assumption of (ii) holds also. Thus we obtain, again using
(12), that ∑

m,n∈Z
|〈F,ZaMmbTnag〉L2(Q)|2 ≤ B||F ||L2(Q)∀F ∈ L2(Q) ⇐⇒ |Zag|2 ≤ B∑

m,n∈Z
|〈f,MmbTnag〉L2(R)|2 ≤ B||f ||L2(R)∀f ∈ L2(R) ⇐⇒ |Zag|2 ≤ B

(15)

Where in the second line we set f = Z−1a F and used unitarity several times. This is of course the definition of a Bessel
sequence, so (ii) is proved. The proof of (iii) is identical only with lower bound included, and (iv) follows immediately from
(iii) and the well known fact that a Gabor system with ab = 1 is a frame if and only if it is a Riesz basis.�

II. SPECTRAL THEORY

Definition 3. Let F = {fα}α∈I be a frame for L2(R). Then the corresponding frame operator SF is

SF : L2(R)→ L2(R)

SF (h) =
∑
α∈I
〈fα, h〉L2(R)fα for h ∈ L2(R) (16)

With this definition Theorem 1 can be reformulated in the language of spectral theory by observing that the frame operator
for regular Gabor frames Ga,b(g) with ab = 1 Sg is precisely conjugate to the multiplication operator T : L2(Q) → L2(Q)
with Tf = |Zag|2 · f . The results in Theorem 1 follow, but in fact this result (following [7]) allows a full characterization of
the spectral calculus of frame operators for regular Gabor systems.

Theorem 2. Let g ∈ L2(R) and ab = 1. Then

ZaSgf = |Zag|2Zaf (17)

Where Sg is the frame operator for Ga,b(g).

Sg(h) =
∑
m,n∈Z

〈h,MmbTnag〉L2(R)MmbTnag (18)

Proof. We again employ the crucial operator identity ZaMmbTna = Mm,nZa for ab = 1, as well as the unitarity of Za.
Namely,

ZaSgf = Za
∑
m,n∈Z

〈f,MmbTnag〉L2(R)MmbTnag

=
∑
m,n∈Z

〈f,MmbTnag〉L2(R)ZaMmbTnag

=
∑
m,n∈Z

〈Zaf,Mm,nZag〉L2(Q)Mm,nZag

= |Zag|2
∑
m,n∈Z

〈Za,Mm,n〉L2(Q)Mm,n

= |Zag|2Zaf

(19)
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Where in the last step we use the fact that Mm,n is an orthonormal basis for L2(Q). �
We therefore conclude that Sg = Z−1a X|Za|2gZa where Xα is the multiplication operator by α on L2(Q). This is a beautiful
result in its own right, but it also provides an immediate proof of Theorem 1. Moreover, it gives the optimal frame bounds for
Ga,b(g) as

Aopt = essinf(x,ξ)∈Q|Zag(x, ξ)|2

Bopt = esssup(x,ξ)∈Q|Zag(x, ξ)|2
(20)

Theorem 2 also provides convenient accesss to the holomorphic functional calculus for the frame operator Sg , easily providing
both the inverse and unique positive definite square root of the frame operator as

ZaS
−1
g = |Zag|−2Zaf

ZaS
± 1

2
g = |Zag|±1Zaf

(21)

This result can be applied for example to compute the canonical dual window γ0 = S−1g g as

Zaγ0 = |Zag|−2Zag =
1

Zag
(22)

Moreover the frame reconstruction formula for Ga,b(g) yields

f =
∑
m,n∈Z

〈f, S−1/2g gm,n〉L2(R)S
−1/2
g gm,n =

∑
m,n∈Z

〈Zaf, |Zag|−1Zagm,n〉L2(Q)Z
−1
a |Zag|−1Zagm,n (23)

For each f ∈ L2(R).

III. BALIAN-LOW

The Balian Low theorem is an uncertainty principle concerning Gabor systems with ab = 1. The theorem was stated
independently by Balian [1] and Low [10]. Both proofs contained a gap that was resolved by Daubechies, Coifman, and
Semmes in [6]. The original proofs employed the Zak transform and (ii) from Lemma 2, but an alternate proof was given by
Battle in [2] employing operator theory and relating the result back to the classical uncertainty principle. The statement of the
theorem is

Theorem 3. Let g be such Ga,b(g) be a Gabor system with ab = 1 that forms an orthonormal basis for L2(R). Then(∫ ∞
−∞
|xg(x)|2dx

)(∫ ∞
−∞
|ξĝ(ξ)|2dξ

)
= +∞ (24)

A natural question, investigated in [4], is to determine whether the theorem is sharp in the sense that the weights |x|2
and |ξ|2 cannot be replaced by something smaller. The answer is almost certainly no – indeed in [4] the authors construct a
generating function g ∈ L2(R) satisfying the following

Theorem 4. Let ε > 0. There is a constructible g ∈ L2(R) with the property that Ga,b(g) is an orthonormal basis for L2(R)
and such that ∫ ∞

−∞
|g(x)|2 1 + |x|2

log1+ε(2 + |x|)
dx <∞ (25)

and ∫ ∞
−∞
|ĝ(ξ)|2 1 + |ξ|2

log1+ε(2 + |ξ|)
dξ <∞ (26)

Proof. Following [4] we consider the case a = b = 1 and denote Z1 as Z. Owing to Theorem 1 it is necessary to consider
functions of the form

Z(g)(x, ξ) = h(x, ξ) = e2πiH(x,ξ) (27)

In order to insure that Z(g) is well defined on Q we will require that H(1, ξ) = H(0, ξ) + kξ where kξ ∈ Z. Note however
that Lemma 2 implies that there do not exist any continuous functions satisfying this constraint, since if the Zak transform of
a function g ∈ L2(R) is continuous it must have a zero. Thus h must have at least one point of singularity. The authors of
[4] construct such a function with exactly one point of singularity and explain that they hope this will give rise to good decay
properties for g and ĝ. They introduce the following
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Definition 4. (1) Let φ ∈ C∞(R) be such that

φ(x) = −1, for x ∈ (−∞, 0],

φ(x) = 0, for x ∈ [1,∞),

φ(x) ∈ [−1, 0], for all x ∈ R
(28)

(2) Let ψ(x) = 1[0,∞)x
a where a > 0 is fixed

(3) Given 0 < ε < 1
8 let γ ∈ C∞(R) be a function satisfying

supp(γ) ⊆ [−2ε, 2ε], γ(x) = 1 for x ∈ [−ε, ε] (29)

and

γ(x) ∈ [0, 1] for all x ∈ R (30)

Given the above definition, the authors of [4] employ the following construction

Lemma 3. There exists a function H : [− 1
2 , 1]× [0, 1)→ R with the following properties

(1) H(x, ξ) = 0 for x ∈ [− 1
2 , 0]

(2) H(x, ξ) = φ( ξ
ψ(x) ) for x ∈ (0, 2ε], where ε > 0 is chosen for the definition of γ.

(3) H(x, 0) = 0 for x ∈ [− 1
2 , 0] and H(x, 0) = −1 for x ∈ (0, 1]

(4) H(1 + x, ξ) = H(x, ξ) + (ξ − 1) for x ∈ [− 1
2 , 0]

(5) The function e2πiH(x,ξ) : [− 1
2 , 0]× T→ C is of class C∞ away from (0, 0) and (1, 0)

Proof. The proof is by construction, namely if (x, ξ) ∈ [− 1
2 , 0]× [0, 1) then

H(x, ξ) := γ(
x

2
)1(0,1](x)φ(

ξ

ψ(x)
) + (1− γ(

x

2
))1(0,1](x)(ξ − 1) (31)

satisfies properties (1) through (5). �
The regions of qualitatively different behavior for H are illustrated in the following figure: We then set h(x, ξ) = e2πiH(x,ξ)

Fig. 1. Figure from [4] illustrating behavior of the constructed H function

for (x, ξ) ∈ [− 1
2 , 1]× T. Using property (4) of Lemma 3 we extend h to R× T via

h(k + x, ξ) = h(x, ξ)e2πik(ξ−1) = h(x, ξ)e2πikξ (32)

Finally, the authors define g to be the inverse Zak transform of h via

g(k + x) = Z−1(h)(k + x) k ∈ Z, x ∈ [−1

2
,

1

2
) (33)
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The authors then separate g into a singular part g1 and a smooth part g2 so that g = g1 + g2 and

g1(k + x) = γ(x)g(k + x)

g2(k + x) = (1− γ(x))g(k + x)
(34)

Notice that h, being an exponential with purely imaginary exponent, immediately satisfies the criterion in Theorem 1 for
Ga,b(g) to be an orthonormal basis for L2(R). Thus it remains estimate the integrals in Theorem 4. We rely heavily on the
remark that followed Lemma 1 that

g(x− k) = (F−1ξ h)(x, k) = (F−1ξ h)(x− k, 0) (35)

to prove the following

Lemma 4. g2 belongs to the Schwartz class S(R)

Proof. If y ∈ supp(g2), we have y of the form y = k + x where k ∈ Z and x ∈ [ε, 1− ε]. Then

∂lxg2(y) = ∂lxg2(k + x) = ∂lx(1− γ(x))(F−1ξ h)(x,−k)

=

l∑
m=0

(
m

l

)
∂l−mx (1− γ(x))∂mx (F−1ξ h)(x,−k)

(36)

Moreover, employing the dominated convergence theorem and integrating by parts we find

∂mx (F−1ξ h)(x,−k) = ∂mx

∫
T
e2πikξh(x, ξ)dξ

=

∫
T
e2πikξ∂mx h(x, ξ)dξ

=
1

(2πik)n

∫
T
∂nξ e

2πikξ∂mx h(x, ξ)dξ

=
1

(−2πik)n

∫
T
e2πikξ∂nξ ∂

m
x h(x, ξ)dξ

(37)

Since the function h is smooth [ε, 1− ε]× T we conclude that there exists Cl,n such that

|∂lxg2(y)| ≤ Cl,n
1

1 + |k|n
(38)

Where again y = k + x. Since this bound is summable we conclude that g2 ∈ S(R).�
Moving onto g1 the authors of [4] employ the following form

g1(k + x) = γ(x)(δ(k) + 1[0, 12 )
xaF (kxa)) (39)

Where δ is the Kronecker delta and F ∈ S(R). Defining Φ(ξ) = e2πiφ(ξ) − 1 this identity can be derived as

g1(k + x) = γ(x)(F−1ξ h)(x,−k) = γ(x)

∫
T
h(x, ξ)e2πikξdξ

= γ(x)1[− 1
2 ,0]

∫
T
e2πikξdξ + γ(x)1[0, 12 )

∫
T
e2πiφ(ξ/x

a)e2πikξdξ

= γ(x)1[− 1
2 ,0]

δ(k) + γ(x)1[0, 12 )

(
δ(k) +

∫
T
(e2πiφ(ξ/x

a) − 1)e2πikξ)dξ

)
= γ(x)1[− 1

2 ,0]
δ(k) + γ(x)1[0, 12 )

(
δ(k) + xaΦ̂(−kxa)

)
= γ(x)(δ(k) + xaF (kxa))

(40)

Where F (kxa) is defined to be zero for x ∈ [− 1
2 , 0]. F is manifestly a Schwartz function here.�

We can improve the situation further by noting that g0(k + x) := g1(k + x)− γ(x) = γ(x)1[0, 12 )
(x)xaF (kxa) for k ∈ Z and

x ∈ [− 1
2 ,

1
2 ).

Theorem 5. Let a > 0. If A = 1 + 1/a and ε > 0 then∫ ∞
−∞
|g(x)|2 1 + |x|A

log1+ε(2 + |x|)
dx <∞ (41)
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By Lemma 4 it is sufficient to replace g with g0 in the first integral so that we have∫ ∞
−∞
|g0(x)|2 1 + |x|A

log1+ε(2 + |x|)
dx =

∑
k∈Z

∫ 1/2

0

|γ(x)xaF (kxa)|2 1 + |k + x|A

log1+ε(2 + |x+ k|)
dx

≤ C1 + C2

∑
|k|≥2

∫ 1/2

0

|xaF (kxa)|2 |k|A

log1+ε(|k|)
dx

= C1 + C2

∑
|k|≥2

∫ (1/2)a

0

|y
k
F (y)|2 |k|A

log1+ε(|k|)
|k|− 1

a
1

a
|y| 1a−1dy

≤ C1 + C2

∑
|k|≥2

|k|−2+A− 1
a

log1+ε(|k|)a

∫
R
|y|A|F (y)|2dy

(42)

The authors then use the fact that F was delicately constructed to be Schwartz class and that A = 1 + 1/a so that we have∫ ∞
−∞
|g0(x)|2 1 + |x|A

log1+ε(2 + |x|)
dx ≤ C1 + C2

∑
k≥2

1

|k| log1+ε(|k|)
<∞ (43)

The inequality on the ξ side takes a similar form with B = 1 + a as the weight exponent (I omit the full proof for sake of
brevity) so that if a = 1/(A− 1) = B − 1 we come to the main theorem of [4] which is

Theorem 6. If 1
A + 1

B = 1 and ε > 0 then there exists g ∈ L2(R) such that Ga,b(g) is an orthonormal basis for for L2(R)
and such that ∫ ∞

−∞
|g(x)|2 1 + |x|A

log1+ε(2 + |x|)
dx <∞ (44)

and ∫ ∞
−∞
|ĝ(ξ)|2 1 + |ξ|B

log1+ε(2 + |ξ|)
dξ <∞ (45)

Theorem 4 is of course a corollary of this theorem for the case A = B = 2. �
Thus the Zak transform has provided us with a proof of the sharpness of the Balian Low theorem and in doing so a family of
generating functions for Ga,b(g) which are optimal with respect to the uncertainty in Balian Low.

IV. AMALGAM BALIAN LOW

Thus we have seen that the Zak transform is intimately related to Gabor systems with ab = 1 via functional calculus and that
it provides a means for analyzing the sharpness of the celebrated Balian Low uncertainty principle. It should be little surprise,
therefore, that an interesting direction of modification of the Balian Low Theorem also arises from the Zak transform (I refrain
from the word generalization because the results are in fact separate). Following [3] we introduce the Wiener amalgam space
as

Definition 5. (Wiener Amalgam Space). For p, q ∈ Z fixed define

W (Lp, lq) =

{
f : ||f ||W (Lp,lq) = (

∑
k∈Z
||f · 1[k,k+1]||qp)1/q

}
(46)

The amalgam space simultaneously encodes both local (Lp(I)) and global (lq(Z) information. Moreover, owing to part (i)
of Lemma 2 we have that for g ∈W (Lp, lq) the series Zag converges absolutely absolutely in Lp(Q). Thus, the Zak transform
maps continuously maps W (Lp, lq) into Lp(Q).[3] The case of p =∞ provides the following uncertainty theorem (note that
the orthonormal basis criterion of Balian Low is relaxed to that of an exact frame):

Theorem 7. (Amalgam Balian Low). Let g ∈ L2(R) and ab = 1. If Ga,b(g) is an exact frame for L2(R) then

g /∈W (C0, l
1) and ĝ /∈W (C0, l

1) (47)

Proof. Without loss of generality the authors take a = b = 1 and proceed by contradiction. Namely, if g ∈ W (C0, l
1) then

g(x− k)e2πikξ is continuous for each k. However, we note that

||Zag||Lp(Q) ≤
∑
k∈Z
||g(x− k)e2πikξ||Lp(Q)

=
∑
k∈Z
||g · 1[k, k + 1]||Lp(R) = ||g||W (Lp,l1) <∞

(48)
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Hence Zag converges in L∞ (uniformly) on Q, implying in particular that Zag is continuous on R × R. Therefore, by part
(ii) of Lemma 2 Zag must have a zero, so that the Gabor system Ga,b(g) cannot be a frame by Theorem 1. Since it is
readily verified that ˆgm,n = e2πimng−n,m it is the case that the Gabor system generated by g is a frame if and only if that
corresponding to ĝ is also a frame. Therefore the theorem holds. �
Remark The Amalgam Balian Low theorem is not a generalizaton of the Balian Low theorem, owing to the following example:

Lemma 5. There exists g such that g, ĝ ∈W (C0, l
1) while nevertheless satisfying ||xg(x)||2||ξĝ(ξ)||2 =∞.

Proof. The proof in [3] is by explicit construction. Let f : [0, 1]→ R be given as

f(t) = max{1− |2t− 1|, 0} (49)

Then f is continuous, piecewise linear and supported on [0, 1]. If we take

g(t) =

∞∑
n=1

n−3/2f(t− n) (50)

Then g ∈W (C0, l
1) and moreover

ĝ(ξ) =

∞∑
n=1

n−3/2e2πinξ f̂(ξ)

= (

∞∑
n=1

n−3/2e2πinξ)2e−πiξ(
sin(πξ/2

πξ
)2

(51)

Employing the Fejer kernel in the last step. Because of the rapid decay of its Fourier coefficients,
∑∞
n=1 n

−3/2e2πinξ is a
continuous, periodic function. Hence we obtain ĝ ∈ W (C0, l

1) also. The last step is to show the divergence of the following
integral ∫ n+1

n

|xg(x)|2dx = n−3
∫ n+1

n

|xg(x− n)|2dx

≥ n−3
∫ n+1

n

|ng(x− n)|2dx = n−1||g||22

(52)

Hence

||xg(x)||2 =

∞∑
n=1

∫ n+1

n

|xg(x)|2dx ≥ ||f ||22
∞∑
n=1

1

n
= +∞ (53)

Thus take g to be the construction in the lemma.�

V. CONCLUDING REMARKS

Current areas of research involving the Zak transform include the theory of coherent states in quantum mechanics[? ],
sampling theorems for wavelet spaces[8], and analysis of non-stationary signals. I hope the collection of results herein
demonstrate the unique role played by the Zak transform in understanding mixed time-frequency analysis, much the same
way that the Fourier transform plays a unique role in understanding separated time and frequency analysis. The theory of the
Zak transform is comparatively under developed and likely will provide many fruitful further avenues of research, some along
the lines presented herein.
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