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Abstract

Generative adversarial networks (GANSs) are neu-
ral networks that are commonly used in image
synthesis tasks where realism is a priority. De-
spite their strong ability to render realistic images,
it has been shown that GANSs can learn biases that
are present in the training dataset, which nega-
tively impacts the network’s ability to generate a
diverse set of images. In particular, it has been
shown that GAN’s trained on photos of centered
human faces often fail to generate any meaningful
images if the subject’s face is not centered in the
image frame. Prior work extended the StyleGAN2
architecture such that it was able to generate off-
center images by adding a positional encoding
element to the network. In this work, we further
extend this spatially unbiased GAN to be able to
predict the amount of translation an image has
undergone, allowing the model to perform high-
quality reconstructions without requiring users to
provide the image translation parameters. Further-
more, we improve upon the original positional
encoding capabilites to enable our network to
generate images that have been subject to arbi-
trary affine transformations (e.g. rotations and
shears). Note: This report contains new results
that were not included in our final project presen-
tation. These results can be found in Sections 6
and 7, which are headered with red text.

1. Introduction

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) are a powerful tool for generating highly re-
alistic images in a variety of domains. Using GANs, we
can learn a representation of a distribution without the need
for large amounts of labeled data, and we can sample from
this latent representation to produce new, realistic examples.
Since our latent space is a representation of the input data
distribution, it is common for biases present in the training
data to also be present in the latent representation. In the
case of a dataset of face images, prior work has shown that
latent representations learned by GANs exhibit a strong spa-
tial bias towards faces that are positioned at the center of
the image (Choi et al., 2021).

One limitation of models that have learned a spatial bias is
that they struggle to generate high-quality images for which
this spatial bias is not present (e.g. a once-centered image
which has been translated such that the person’s face is no
longer in the center of the image). In this work, we consider
the capacity of GANSs to generate high-quality images that
do not include this spatial bias. Specifically, we investigate
the efficacy of different methods for training GANS to gen-
erate images of faces where different affine transformations
have been applied to the image (e.g. translations and shears).
To this end, we have two main contributions that build upon
prior work (Choi et al., 2021) to train spatially unbiased
GAN:s. First, we extend the architecture to be able to predict
the translation that the subject image has undergone. This
functionality allows the model to perform faithful recon-
structions during GAN inversion without requiring explicit
translation information of the input image to. Second, we
improve upon the the positional encoding functionality in-
troduced by Choi et al. (Choi et al., 2021) by extending
it to other affine image transformations. This extension
allows our model to generate images that have undergone
transformations other than translations (e.g. rotations and
shears), which was not possible using the original model
proposed in (Choi et al., 2021). Finally, we combine these
methodologies to provide our model the ability to generate
and perform GAN inversions of affine-transformed images
without requiring the explicit transformation and without
ever training on such affine-transformed images.

2. Related Work

2.1. Translation Invariance in Convolution Networks

When tasked with detecting objects in a frame, it is impor-
tant to be able to identify objects irrespective of the objects’
positions within the image frame in order to achieve robust
detection rates. Although the convolution operation itself
is translation-invariant, the convolutional neural network
(CNN) architecture is not (Alsallakh et al., 2020; Azulay &
Weiss, 2018; Kayhan & Gemert, 2020; Manfredi & Wang,
2020; Zhang, 2019). CNN models can learn translation-
dependent biases from implicit position encoding from zero-
padding (Islam et al., 2020; Kayhan & Gemert, 2020; Xu
etal., 2021) and due to biases in datasets (Manfredi & Wang,
2020). Since it is clear that even models that are built upon
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individually translation-invariant operations can exhibit spa-
tial biases, like CNNs do, it is important that we develop
specific techniques to train networks that are robust against
spatial biases.

2.2. Positional Encoding

Positional encoding is a method for codifying the positions
of elements within a sequence. Commonly used in natural
language tasks (Vaswani et al., 2017), positional encoding
provides an efficient way to integrate positional information
into neural networks by adding a sinusoidal embedding to
the input data. Positional encoding has also proven to be
effective in the computer vision domain, yielding state-of-
the-art performance at object detection (Carion et al., 2020)
and segmentation (Caron et al., 2021) tasks. Additionally,
positional encoding is a fundamental component in 3D im-
age synthesis tasks, as demonstrated by the recent NeRF
architecture (Mildenhall et al., 2020).

2.3. Learned Biases in Generative Models

When training generative models, it is common for the final
model to have learned underlying biases in the training
data (Esser et al., 2020; Zhao et al., 2018). If we want to
develop models that are capable of generating a diverse
set of images, it is important that our models have as little
bias in them as possible, as this bias will constrain the
models to generate only certain types of data. In addition to
constraining the diversity of generated images, it has been
shown that generative models that have learned biases in the
data can use these biases as anchors during the generation
process, which can serve as a “shortcut” which the model
relies upon for faithful generation (Bahng et al., 2020). In
this work, we focus on developing GANs that overcome
their learned biases in the positions of faces within the image
frame.

3. Original MS-PE and its Limitations

Multi-scale positional encoding (MS-PE) was introduced
as a solution to the spatial bias inherent to many generative
models. While current models are powerful, they have a
strong bias towards images that are in positions seen during
training; for example, if all images are centered, the model
will be able to generate high-fidelity centered images, but
will struggle with generating off-centered images. This is
a clear flaw, as a model should be able to generate and
recognize faces regardless of their positions in an image.

The solution presented in (Choi et al., 2021) was to bor-
row the idea of positional encoding from transformer litera-
ture, where the features for each pixel include information
about its location in the image. Further, it was shown that
single-scale positional encoding was ineffective, and that

Original StyleGAN2

MS-PE + StyleGAN2

Figure 1. Multi-scale positional encoding allows the StyleGAN2
architecture to perform GAN inversion of a translated image.

positional encoding was necessary at every scale of the
generator (hence, multi-scale positional encoding).

To encode a pixel’s position, they use a continuous version
of the binary representation of the x and y position, found
using the following:

PE( jy = |sin(i/10000/%), cos(i/10000*/*)¢_| € R*
(1)

where k = {0, 1, ...,d — 1} and d is a quarter of the channel
dimension, which allows us to add this encoding directly
into our feature map at every scale. Finally, a learnable
scalar is placed in front of the positional encoding in order
to properly weight it as a feature.

By incorporating this technique into the StyleGAN?2 (Karras
et al., 2020) architecture, the authors showed that the result-
ing model was much more translation-invariant. Figure 1
depicts the result of a GAN inversion on a translated image
by StyleGAN2 with and without MS-PE. We note that the
only difference between models is the incorporation of MS-
PE; both models were trained on centered images, but the
model with MS-PE was able to generalize its knowledge
to translated images. While an impressive result, we found
two limitations of the current implementation of MS-PE that
provided us with opportunities for improvement.

First, in order for MS-PE to work properly, it requires ex-
plicit transformation information. From a generation per-
spective, this is necessary to tell the model what kind of
image to generate and can simply be randomized to gener-
ate an array of translated images. However, from a GAN
inversion perspective, it is unrealistic that we would know
the translation of an image prior to inversion. We hypoth-
esized that this information could be estimated with high
accuracy using neural networks. Second, the current imple-
mentation of MS-PE only supports transformations that are
completely separable in x and y. We hypothesized that this
was needlessly restrictive and that any affine transformation
could be represented using a modified version of MS-PE.

Thus, our contributions are twofold. We first show that the
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necessity of explicit transformation information restricts
the model’s ability to perform GAN inversion. To remedy
this, we train a neural network that can accurately predict
the translation information of an image, thus eliminating
the need for the explicit transformation to perform accurate
GAN inversions. Then, we modify the current MS-PE im-
plementation to a more expressive version we call Affine
MS-PE (and abbreviate as APE). We show that this imple-
mentation can allow a model to generate and invert certain
affine-transformed images despite being trained on centered,
untransformed images. Finally, we go on to combine both
of these ideas to show that we can predict the transformation
of an image and use this information to make a high quality
reconstruction of an affine-transformed image.

For our experiments, we used a modified version of the
Flickr-Face-HQ (FFHQ) dataset (Karras et al., 2019). The
original dataset had images of resolution 1024 x 1024; we
reduced the resolution of all images to 256 x 256 to facilitate
faster computations. Further, the FFHQ dataset had 70, 000
images, of which we used the first 50, 000 for training and
the next 1, 000 for testing. Unless otherwise specified, the
models we train use this train/test split, and we train for 500
thousand iterations of SGD using a batch size of 8. We note
that the original paper allowed for the generation of images
at different resolutions by training on images of several
resolutions; we neglect to do so in our experiments and only
make use of 256 x 256 images. However, we expect our
results to generalize to different resolutions when trained to
do so, and leave this to future work.

4. Learning Transformation Parameters

In this section we will show the motivation for our method
based on learned transformations, then the results that we
obtained on GAN inversion with translated images and com-
parisons to other methods.

4.1. Limitations of “Naive” MS-PE Methods

To motivate our experiments with learned transformations,
we tried to understand how well the “naive” MS-PE methods
perform when trying to do GAN inversions on translated
images. We ran two experiments: 1) we applied GAN
inversion on 1000 randomly horizontally translated images;
2) we applied GAN inversion on 100 randomly horizontally
and vertically translated images. For both experiments,
we compared three models: a) the classic StyleGAN2; b)
StyleGAN2 with MS-PE and the assumption that all the
images are centered; ¢) StyleGAN2 with MS-PE and using
a random guess for the translation information. The metric
we used is relative L2 reconstruction error. We present
the results in Figure 2. From these experiments, we can
conclude that the “Naive” MS-PE methods do not perform
better than the classic StyleGAN2 (which does not use MS-
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Figure 2. Comparison between the “Naive” MS-PE methods and
classic StyleGAN2 (no MS-PE).

PE at all).

4.2. Learning Transformations

We used a slightly modified AlexNet (Krizhevsky et al.,
2012) architecture to predict the translation information: we
replaced the last layer to have two output neurons and used
the Sigmoid activation function. Note that later, we rescaled
the output of the model to match the pixel translations (we
multiplied by 255 and rounded the value to the closest in-
teger). We did this because we found that the model learns
better when the output is in [0, 1] compared to integers in
[0, 255]. We trained the model for 100 epochs with a batch
size of 512 and Adam optimizer (Kingma & Ba, 2014), with
a learning rate of 0.001 reduced by a factor of 10 every 30
epochs. We ran an experiment similar to the one described
in Section 4.1, but considering the following three meth-
ods: a) best “Naive” method, that is, classic StyleGAN2; b)
MS-PE with the exact translation information known and c)
ours, with the predicted translation information. The results
are shown in Figure 3. The conclusion of this experiment is
that our method outperforms the naive MS-PE approaches
and performs almost as well as MS-PE with the translation
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Figure 3. Comparison between our method, the best “Naive”” MS-
PE method and MS-PE with the exact translation parameters
known.

information known. Also, in Figure 13 of Appendix A, there
are some qualitative results for each method.

5. Affine MS-PE

The multi-scale positional encoding scheme used in (Choi
et al., 2021) allows for translation-invariant GAN inversion,
however real world images are often not only translated but
photographically “shot” off of the z-axis (that is to say not
head on). Recall that if the focal length of a camera is f then
the “camera plane” projection of a point (z,y, z) in three
dimensional space is (fx/z, fy/z, f). This transformation
is not linear (owing to the division by z) however it can
be lifted to a linear transformation on the projective space
H? = R*/ ~ (z ~ y if and only if there exists A\ € R so
that x = A\y). In particular the camera coordinates are given

by
i fx/z fx f 0 0 0] |«
U8 I A7 IO ) I L A R I ) S
2 f fz 0 0 f 0Of |z
1 1 z 0 0 1 0] |1
—_——
Q

Thus if the camera is translated by b € R? and then rotated
by R € SO(3) the resulting projective transformation of
the coordinates in the camera plane is 7’ = QT eamera®
where

R b} . 3)

Tcamera = {OT 1

Thus the projective Euclidean transformation Tcamera acts
on the image coordinates via the affine representation

0" 1
from QT camera@’ (QT here is the Penrose pseudo-inverse
of (). All this to say that if we want to be able to perform
generative tasks such as domain adaptation and GAN inver-
sion on images that might be shot “off” of the z-axis, then it
suffices to make our generator invariant to arbitrary affine
transformations of R, that is, the six parameter group:

/ /
[A } formed by removing the third row and column

A= {(A,b)|A € GL(2),b € R*} 4)

where (A,b) - (A', V') = (AA’,b+ AV') and the group acts

A bl |x
2 i _ —
onR?via (A,b)r = Az + b= {O J L]

The qualitative results in Figure 4 indicate that MS-PE is
not invariant to arbitrary affine transformations of the im-
age, and hence will struggle with images not shot head on.
Moreover, Figure 4 suggests that the “more extreme” the
transformation the more MS-PE will deform the image. As
it turns out, the reason for this failure is not a fundamental
non-applicability of positional encoding to the affine case
but a design choice in the positional encoding scheme used
in (Choi et al., 2021) that implicitly assumes two features of
the image transformation: In particular, (Choi et al., 2021)
implicitly assumes that the image transformation commutes
with the operation of taking the positional encoding and that
it contains no “‘interaction” between x and y coordinates.
The steps used for positional encoding at a particular scale in
(Choi et al., 2021) are shown diagrammatically in Figure 5.
Notice that with this approach it is not possible to transform
a given row of the image’s positional encoding in a way that
depends on the row or column index (the simplest example
of such a transformation is a shear, where the shift of a row
is proportional to its index). Moreover, note that (cyclic)
translation prior to positional encoding gives the same result
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Figure 4. First row: Increasingly rotated target images. Second
row: GAN projections of the rotated images. Third row: Increas-
ingly sheared target images. Fourth row: GAN projections of the

sheared images.
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Figure 5. Step 1: Horizontal and vertical index vectors are sepa-
rately transformed (in this case translated). Step 2: Horizontal and
vertical index vectors are positionally encoded. Step 3: Image is
positionally encoded via the the tensor product of the horizontal
and vertical positional encodings.

as (cyclically) translating the positionally encoded vectors,
making it irrelevant which occurs first. Together these two
assumptions entirely restrict the applicability of MS-PE to
translations — but they are not necessary!
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Figure 6. Step 1: Take the tensor product of the horizontal and
vertical index vectors. Step 2: Transform the resulting index 3-
tensor via a Hadamard action of the affine transformation. Step 3:
Positionally encode the resulting transformed index tensor.

Indeed, positional encoding in general does not commute
with affine transformations, and affine transformations
require jointly transforming x and y coordinates. Our
solution is the positional encoding scheme laid out in
Figure 6. Under this scheme, we form a joint index
based positional encoding tensor first, apply the desired
transformation via a Hadamard action (entry-wise along the
first and second tensor indices), and only then do we form
the continuous binary positional encoding tensor (again in
an entry-wise fashion). This scheme agrees with that in
(Choi et al., 2021) if the transformation acts separately on x
and y and commutes with positional encoding. A key point
here is that this positional encoding also acts on multiple
scales; however, unlike translation, the linear part of an
affine transformation “looks the same at every scale” and
does not require re-scaling (this property could be taken as
a heuristic definition for linear transformations).

Quantitative results may be found in Figures 7 and 8 for
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Figure 7. Top: Histogram of I reconstruction error for 50 images
with three different shears applied to each. Bottom: {2 reconstruc-
tion error as a function of shear parameter « for five images and
20 discrete angles.

shears and rotations (qualitative results can be found in the
appendix). As can clearly be seen, our Affine Positional
Encoding (APE) performs as well as the original positional
encoding scheme when no transformation is applied to the
image, but as we increase the distance of the transformation
from identity (via angle 6 and shear parameter « respec-
tively) our method outperforms MS-PE, and indeed appears
not to suffer much in performance at all. We also analyzed
the relationship between reconstruction error and || A — ||
directly (here A is the linear part of the affine transforma-
tion) for 150 random linear transformations (each of the
four matrix entries sampled uniformly from [—1,1]). The
results can be seen in Figure 9, confirming that our method
improves on (Choi et al., 2021) not only for rotation and
shearing but for arbitrary linear transformations.

6. Comparing our Methods to StyleGAN2
Trained on Transformed Images

In some sense, it is unfair to expect a standard StyleGAN2
architecture to be able to perform GAN inversions of trans-
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Figure 8. Top: Histogram of I reconstruction error for 50 images
with three different rotations applied to each. Bottom: [? recon-
struction error as a function of rotation angle 6 for five images and
20 discrete angles.
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Figure 9. I? reconstruction error as a function of || A — I||2 for 150
entry-wise uniformly random transformations.

formed images when it is trained on aligned, centered im-
ages. This sections attempts to provide a a fairer comparison
between StyleGAN?2 and APE. To do so, we train a Style-
GAN2 model on translated and rotated images and compare
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its inversions to a model that makes use of APE. We ex-
pect that APE outperforms the original StyleGAN2 while
also encompassing a wider range of transformations than
translations and rotations.

For the translation experiment, we trained a model on 50000
images that were vertically and horizontally shifted by an
integer number of pixels from O to 255 and compared to our
model that uses APE and predicts the translation informa-
tion. We performed GAN inversion on 1000 images that
were shifted only horizontally and 100 images translated
vertically and horizontally. Figure 10 shows the reconstruc-
tion errors; in both cases, APE with predicted translations
outperforms the original StyleGAN2.

Similarly, we went on to train a model on 50000 images,
where images were rotated by 0, 90, 180, and 270 degrees.
We then inverted 1000 images rotated by a multiple of 90
degrees and compared to our model with APE. Figure 11
depicts the reconstruction errors, where we can see that
APE outperforms StyleGAN2. We note that, for this ex-
periment, we assumed that the rotations were known for
the APE model; however, Section 7 provides evidence that
this assumption likely can be removed. We also note that
APE supports a much wider class of transformations than
rotations, making it a strictly better method than attempting
to enumerate all possible transformations and train on them.

7. Predicting Affine Transformations

In this section, we consider the following experiment: we
compare APE with predicted values for the 6 parameters
of an affine transformation, Original (centered) MS-PE and
APE with the 6 parameters of the affine transformation
known. We used randomly sampled values in the range
(=50, 50) for the two translation parameters and random
samples in the [*° ball of radius 1 around the 2 x 2 iden-
tity matrix for the other four parameters. To predict the 6
parameters, we used an AlexNet model similar to the one
in Section 4.2, but with Tanh activation instead of Sigmoid
and reducing the learning rate every 40 epochs instead of
30. Similarly, we rescaled the output to match the targeted
range, where necessary ((-50, 50) or (0, 2)).

We ran GAN inversion with 100 samples and shown the
plots in Figure 12. The results show that APE with pre-
dicted affine parameters performs significantly better than
Original MS-PE and almost as good as APE with known
affine parameters. We included some qualitative results in
Appendix C, Figure 17.

8. Limitations and Future Work

So far, most of the experiments we describe have shown
success for APE and the ability to predict transformations to
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Figure 10. Comparison between our method (predicted transla-
tions) and StyleGAN?2 trained on translated images.
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Figure 11. Comparison between our method (Affine MS-PE with
known transformations) and StyleGAN2 trained on rotated images.
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Figure 12. Comparison between APE with predicted parameters,
APE with known parameters and Original MS-PE.

facilitate GAN inversion. It is not always the case that APE
outperforms MS-PE during inversion; for example, row 3
of Figure 17 in Appendix C shows an example of an affine-
transformed image where MS-PE creates a better inversion.
However, we claim, that in most cases, APE should perform
better during inversion of affine-transformed images, even
when we must predict the transformations ourselves.

While we argue that the ability to perform GAN inversion
makes our methods a success, GANs are more commonly
used for image generation rather than inversion. Figure 15
in Appendix B shows generated rotated images via APE.
This is a task (unlike inversion) that the original positional
encoding method cannot even attempt, as there is no way to
tell it what transformation to apply. Interestingly, APE does
not do very well once the rotation angle exceeds 90 degrees
— it blurs the image. This should not be that surprising, since
the network was not trained on rotated images and hence,
while it knows the approximate positions of things via APE
it cannot fill in the details. Thus, it seems likely that, during
GAN projection, APE provides coarse grained positional
information that is lacking with the positional encoding
scheme in (Choi et al., 2021), while the single image being
projected provides the fine grained information to fill in the
details.

In terms of future work, we have shown that our work gener-
alizes the space of images a generative model can generate
and invert, assuming that they are of the resolution 256x256.
This is the only aspect of the original MS-PE paper we have
not expanded upon, wherein they train a model on several
different resolutions and show their model can generate im-
ages of arbitrary scale. Thus, the first area of future work
should be to show that our methods work on images of dif-

ferent resolutions, which would confirm our methods are
strictly more representative than those of the original paper.

With the introduction of an additional neural network to pre-
dict transformation information, a new front of vulnerability
has been introduced to the model; an adversary could now
attack the original GAN architecture or the model predicting
transformations during GAN inversion. We have no reason
to believe Affine MS-PE would make the GAN more vul-
nerable, but the same cannot be said for the transformation
predictor. We made no guarantees for this model under ad-
versarial attacks, and future work should investigate if this
is a potential vulnerability and, if so, how to make it robust.

Finally, our experiments were limited to “reasonable” affine
transformations. As images get transformed more aggres-
sively, we would expect the image quality to degrade. It
remains to be shown how far we can push the assumption
of “reasonable” affine transformations and if the assump-
tion is necessary at all. Future work should investigate the
empirical and theoretical bounds on the range of affine trans-
formations Affine MS-PE can handle. Further, a method of
quantifying how much a transformation distorts an image
is vital. We hypothesize that the Frobenius norm between
the 2x2 transformation matrix (i.e. an affine transformation
with no translation) and the identity matrix would be a good
measure, as evidenced by Figure 9.

9. Conclusion

In this work, we investigated the ability for generative ad-
versarial networks (GANS) to be able to synthesize realistic
images of humans faces that have undergone arbitrary affine
transformations. Building upon work by Choi et al. (Choi
et al., 2021), we developed a model capable of predicting
the vertical and horizontal translations that an image has
undergone. This model lead to improved performance in
generating translated images without requiring explicit trans-
lation information to be fed into the input. Additionally, we
improved the model’s ability to learn positional information
in images by extending the positional encoding formulation
to work with arbitrary affine transformations. Using our im-
proved Affine MS-PE, our model was capable of generating
realistic images of human faces that have undergone more
complex transformations such as rotations and shears. With
these improvements, we demonstrated that there is room
for improvement in the ability of GANs to be positionally
unbiased, and we demonstrated two ways in which such
biases can be mitigated. Future work should investigate
the ability of GANs to generate realistic images that have
undergone 3D transformations.
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Towards an Affine-Invariant Generative Model

A. Qualitative Results for Translations B. Qualitative Results for Shear and Rotation
Experiments Experiments
In Figures 13 and 14 we show some qualitative results for ~ Figure 15 shows generated rotated images via APE. Figure
the translations experiments. 16 shows qualitative results of APE vs MS-PE for rotations
and shears.

MSPE (known translations)  MSPE (best ‘naive” approach) MSPE (predicted translations) (ours)

Figure 13. The first column represents the target, the second one
for the experiment with the translation parameters known, the third
one is the best “Naive” method and the last one is ours.

Figure 15. Generated rotated images using APE.

C. Qualitative Results for Random Affine
Transformations

Target StyleGAN trained on translations  MSPE (predicted translations) (ours)

Figure 17 shows qualitative results in GAN inversion with
random affine transformations applied to the samples.

Figure 14. Qualitative results for StyleGAN2 trained on translated
images and our method (with predicted translations).
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Actual Image Original PE (theirs)| Affine PE (ours)

Figure 17. Qualitative results for random affine transformations
APE (known or predicted parameters) vs Original (centered) MS-
PE.

Figure 16. Qualitative results of APE vs MS-PE. While our method
is not perfect for more extreme transformations, it nevertheless
significantly outperforms MS-PE.



